leedcode34. 在排序数组中查找元素的第一个和最后一个位置c++(对于代码随想录解法的个人理解)

刚刚接触算法题新手,仅作个人记录,如果有哪方面错误请及时指正,谢谢。

代码引自代码随想录

题目:

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]。

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

输入:nums = [], target = 0
输出:[-1,-1]

         首先是菜鸟本人解法,暴力法,肯定不如二分法,但是比较好想。

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        int left=0;
        int right=nums.size()-1;
        vector<int> result;
        while(left<=right)
        {
            if((nums[left]==target)&&(nums[right]==target))
            {
                result.push_back(left);
                result.push_back(right);
                return result;
            }
            else if(nums[left]!=target)
            {
                left++;
            }
            else if(nums[right]!=target)
            {
                right--;
            }
        }
        result.push_back(-1);
        result.push_back(-1);
        return result;
    }
};

       经过查看解析和代码随想录的解析,对二分法有进一步的了解,分享一下我对于代码随想录的解法的一些思路,供刚学习算法不太明白二分法的同学参考,有任何问题都可以和我交流,不胜感激。

寻找target在数组里的左右边界,有如下三种情况:

  • 情况一:target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
  • 情况二:target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
  • 情况三:target 在数组范围中,且数组中存在target,例如数组{3,6,7},target为6,此时应该返回{1, 1}

       个人理解:leftBorder,rightBorder代表左右边界(数组下标),但是不包含最终结果,比如找到{1,2,3,3,5},leftBorder=1,rightBorder=4。这两个边界值在情况三的时候会用来计算最终输出位置。

        三种情况还是很好理解的,主要是如何去寻找左边界和右边界。

        主函数代码:

class Solution 
{
public:
    vector<int> searchRange(vector<int>& nums, int target) 
{
        int leftBorder = getLeftBorder(nums, target);
        int rightBorder = getRightBorder(nums, target);
        // 情况一
        if (leftBorder == -2 || rightBorder == -2) return {-1, -1};
        // 情况三
        if (rightBorder - leftBorder > 1) return {leftBorder + 1, rightBorder - 1};
        // 情况二
        return {-1, -1};
 }

       1.二分法确定边界:

        在二分法中,right选取的值为数组最后一个元素值(如下代码),这时left和right的就变成了左闭右闭状态的区间。因为是左闭右闭,所以是可以取到right的,循环中left<=right。在每一次循环中如果找不到元素,就要改变left,和right,因为是左闭右闭,左值是可以取到的,left=middle+1;右值同理right=middle-1。

        还有一种就是左闭右开型的,初始化left=0,但是right=nums.size(),right值为数组的长度,right已经是越界状态,所以在循环中不能取到right(其实,相比左闭右闭right向右移了一位,但是取不到那一位,两种方法实际上取到的下标是一样的),这就导致在循环后,更新right位置时要多取一位,right=middle即可。

        2.确定左边界代码的理解:

int getLeftBorder(vector<int>& nums, int target) 
 {
        int left = 0;
        int right = nums.size() - 1;
        int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况
        while (left <= right) 
        {
            int middle = left + ((right - left) / 2);//取中间值,并且防止数值溢出
            //二分法寻找target
            if (nums[middle] > target) 
            { 
                right = middle - 1;//本题是选择左闭右闭
                
            }
            //寻找左边界,nums[middle] == target的时候更新right
            else if(nums[middle] == target)
            {
                //这个地方比较难懂,middle此时已经找到target了,此时左边界只可能在middle左边或者middle产生
            
                right=middle-1;
                //使用right去缩减搜索区间,如果middle前面没有target,那么就返回leftBorder
                //leftBorder只是边界,并不是target的位置
                leftBorder=right;
            } 
            else 
            {
                left = middle + 1;
            }
        }
        return leftBorder;
    }

3.确定右边界函数的理解:

int getRightBorder(vector<int>& nums, int target) 
     {
        int left = 0;
        int right = nums.size() - 1;
        int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况
        while (left <= right) 
        {
            int middle = left + ((right - left) / 2);//防止数值溢出
            if (nums[middle] > target) 
            {
                right = middle - 1;
            } 
            else if(nums[middle] == target)
            { 
            //确定右边界时,移动left,middle左边元素不可能为右边界,middle是可能的右边界
            //右边界记录为middle+1,是为了情况三时候做出if条件判断,最后会分别加一和减一。
                left = middle + 1;
                rightBorder = left;
            }
            else
            {
                left=middle+1;
            }
        }
        return rightBorder;
    }

        4.全部函数实现

class Solution {
public:
    vector<int> searchRange(vector<int>& nums, int target) {
        int leftBorder = getLeftBorder(nums, target);
        int rightBorder = getRightBorder(nums, target);
        // 情况一
        if (leftBorder == -2 || rightBorder == -2) return {-1, -1};
        // 情况三
        if (rightBorder - leftBorder > 1) return {leftBorder + 1, rightBorder - 1};
        // 情况二
        return {-1, -1};
    }
private:
 int getLeftBorder(vector<int>& nums, int target) 
 {
        int left = 0;
        int right = nums.size() - 1;
        int leftBorder = -2; // 记录一下leftBorder没有被赋值的情况
        while (left <= right) 
        {
            int middle = left + ((right - left) / 2);
            if (nums[middle] > target) 
            { 
                right = middle - 1;
                
            }
            else if(nums[middle] == target)
            {
                right=middle-1;
                leftBorder=right;
            } 
            else 
            {
                left = middle + 1;
            }
        }
        return leftBorder;
    }
     int getRightBorder(vector<int>& nums, int target) 
     {
        int left = 0;
        int right = nums.size() - 1;
        int rightBorder = -2; // 记录一下rightBorder没有被赋值的情况
        while (left <= right) 
        {
            int middle = left + ((right - left) / 2);
            if (nums[middle] > target) 
            {
                right = middle - 1;
            } 
            else if(nums[middle] == target)
            { 
                left = middle + 1;
                rightBorder = left;
            }
            else
            {
                left=middle+1;
            }
        }
        return rightBorder;
    }
   
};

感谢代码随想录的精彩答案,我会一直学习下去,大家一起努力把,第一次写博客有错误请指明,祝君安康!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值