数据聚类与量子进化算法优化研究
在数据处理和优化领域,有两种重要的算法值得深入探讨,分别是用于数据聚类的大爆炸 - 大挤压(BB - BC)算法和用于提升搜索能力的量子进化算法(QEA)改进方法。
大爆炸 - 大挤压(BB - BC)算法在数据聚类中的应用
BB - BC 算法是一种用于解决搜索和优化问题的启发式算法,在数据聚类方面展现出了显著的效果。
算法步骤
- 大挤压阶段 :可以使用公式(3)计算质心,也可以选择最佳拟合候选作为质心。
- 大爆炸阶段 :通过向质心(xc)添加或减去一个正态随机数来在质心周围生成新的解决方案。随着迭代的进行,随机数的值会逐渐减小。
- 检查终止条件 :如果满足终止条件,算法将停止;否则,返回步骤 2。
实验数据集
为了验证 BB - BC 算法的有效性,使用了四个基准数据集进行实验:
| 数据集 | 描述 |
| — | — |
| Iris | 由 Anderson 在 1935 年收集,包含 150 个鸢尾花样本,分为 3 类,每个样本有 4 个数值属性(萼片长度、宽度,花瓣长度、宽度),无缺失值。 |
| Wine | 包含对意大利同一地区但来自三个不同品种的葡萄酒进行化学分析的结果,有 178 个实例,13 个连续数值属性,无缺失值。 |
| Contraceptive Method Choice(CMC) | 是 1987 年印度尼西亚全国避
订阅专栏 解锁全文
24

被折叠的 条评论
为什么被折叠?



