感受野的概念:


卷积核概念:(有不同的卷积核和不同的步长)

卷积的池化:(最大值池化、平均值池化、随机值池化),经常使用的就是max-pooling最大池化


SAME PADDING:表示给卷积外部补零
VALID PADDING:表示不超出平面外部,卷积不足的时候就停止
列子:

LENET5介绍:

具体的演示请参考:(2d和3d的演示卷积过程)
可视化:
http://scs.ryerson.ca/~aharley/vis/conv/
http://scs.ryerson.ca/~aharley/vis/conv/fat.html

卷积mnsit手写数字代码:
#使用卷积进行mnsit手写数字识别
import numpy as np
import torch
from torch import nn,optim
from torch.autograd import Variable
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
#训练集
train_dataset=datasets.MNIST(root='./', #存放到项目目录下
train=True, #是训练数据
transform=transforms.ToTensor(), #转换成基本类型tensor数据
download=True) #需要下载
#测试集
test_dataset=datasets.MNIST(root='./',
train=False,
transform=transforms.ToTensor(),
download=True)
#每次训练图片的数量
batch_size=64
#装在训练集数据
train_loader=DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True
)
#加载训练集
test_loader=DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True
)
for i,data in enumerate(train_loader):
inputs,labels=data
print(inputs.shape)
print(labels.shape)
break
#定义网络结构(使用卷积定义)
class Net(nn.Module):
def __init__(self):
super(Net,self).__init__()#调用父类方法
#Dropout一部分神经元工作一部分不工作
self.conv1=nn.Sequential(nn.Conv2d(1,32,5,1,2),nn.ReLU(),nn.MaxPool2d(2,2))#nn.ReLU()表示非线性激活函数;
# nn.MaxPool2d(2,2)表示池化,2是2*2卷积,2表示步长是2
#Conv2d(1, 32, 5, 1, 2),1表示输入的是黑白图片,通道是1,彩色就是3;32表示卷积完之后输出32个特征图;5表示卷积核大小,是5*5;
#1表示卷积核的步长是1;2表示给图像的外面填写几圈0。
self.conv2 = nn.Sequential(nn.Conv2d(32,64,5,1,2), nn.ReLU(), nn.MaxPool2d(2,2))
#全连接层
self.fc1 = nn.Sequential(nn.Linear(64*7*7,1000), nn.Dropout(p=0.5),nn.ReLU())#64*7*7表示64个特征图,7*7的卷积
self.fc2=nn.Sequential(nn.Linear(1000,10),nn.Softmax(dim=1))
def forward(self,x):
#[64,1,28,28]卷积必须传入4维的数据
x=self.conv1(x)
x=self.conv2(x)
# 全连接要求数据是2维的
#(64,64,7,7),批次是64,64个特征图,每个特征图大小是7*7;-1表示自动匹配
x=x.view(x.size()[0],-1)
x=self.fc1(x)
x=self.fc2(x)
return x
#学习率
LR=0.001
#定义模型
model=Net()
#定义代价函数(均方差)
mse_loss=nn.MSELoss()
#定义优化器,weight_decay设置L2正则化
optimizer=optim.Adam(model.parameters(),LR)
def train():
# 表示训练状态, #Dropout一部分神经元工作一部分不工作
model.train()
for i,data in enumerate(train_loader):
#获得一个皮次数据和标签
inputs,labels=data
#获得模型预测结果(64,10)
out=model(inputs)
#to onehot,把数据编码变成独热编码
#(64)编程(64,-1)
labels=labels.reshape(-1,1)
#tensor.scatter(dim,index,src)
#dim对那个维度进行独热编码
#index:要将src中对应的值放到tensor的哪个位置
#src:插入index的数值
one_hot=torch.zeros(inputs.shape[0],10).scatter(1,labels,1)
#计算loss,mse_loss的俩个数据的shape要一致
loss=mse_loss(out,one_hot)
#梯度清零
optimizer.zero_grad()
#计算梯度
loss.backward()
#修改权值
optimizer.step()
#测试
def test():
# 表示模型测试状态,#Dropout所有神经元都要工作
model.eval()
correct=0
for i,data in enumerate(test_loader):
#获取一个批次的数据和标签
inputs,labels=data
#获得模型的预测结果(64,10)
out=model(inputs)
#获取最大值,以及最大值所在的位置
_,predicted=torch.max(out,1)
# 预测正确的数量
correct += (predicted == labels).sum()
print("Test acc:{0}".format(correct.item()/len(test_dataset)))
correct = 0
for i, data in enumerate(train_loader):
# 获取一个批次的数据和标签
inputs, labels = data
# 获得模型的预测结果(64,10)
out = model(inputs)
# 获取最大值,以及最大值所在的位置
_, predicted = torch.max(out, 1)
# 预测正确的数量
correct += (predicted == labels).sum()
print("Train acc:{0}".format(correct.item() / len(train_dataset)))
for epoch in range(10):
print("epoch:",epoch)
train()
test()
测试结果:
F:\开发工具\pythonProject\tools\venv\Scripts\python.exe F:/开发工具/pythonProject/tools/pytools/pytools04.py
torch.Size([64, 1, 28, 28])
torch.Size([64])
epoch: 0
Test acc:0.9853
Train acc:0.9858
epoch: 1
Test acc:0.9896
Train acc:0.9900666666666667
epoch: 2
Test acc:0.9899
Train acc:0.9923166666666666
epoch: 3
Test acc:0.9919
Train acc:0.9944166666666666
epoch: 4
Test acc:0.9927
Train acc:0.9957666666666667
epoch: 5
Test acc:0.9921
Train acc:0.9962
epoch: 6
Test acc:0.9905
Train acc:0.99495
epoch: 7
Test acc:0.9921
Train acc:0.99665
epoch: 8
Test acc:0.9922
Train acc:0.9953166666666666
epoch: 9
Test acc:0.9914
Train acc:0.9961166666666667
Process finished with exit code 0
准确率打到99%,重要的就是网络结构不一样。

1602

被折叠的 条评论
为什么被折叠?



