PML之平均 、中值 、众数、标准偏差、方差

NumPy模块为此提供了一种方法,可以计算平均、中值和众数

1、平均值

import numpy as np

value=[2,4,6,14,34,88,98,17,47]

#计算平均值
mean=np.mean(value)
print(mean)

结果:

34.44444444444444

2、中值

#计算中值
med=np.median(value)
print(med)

结果:

17.0

3、众数

import numpy as np
from scipy import stats
value=[2,4,6,14,34,2,2,88,98,17,47]

#众数
mod=stats.mode(value)
print(mod)

结果:

ModeResult(mode=array([2]), count=array([3]))

众数是2,出现了3次

4、标准偏差

标准偏差是一个数字,描述值的分散程度。

低标准偏差意味着大多数数字接近均值(平均值)。

高标准偏差表示这些值分布在更宽的范围内。

#标准偏差
x = np.std(value)
print(x)

结果:

33.4374956553639

5、方差(Variance)

方差是另一个数字,指示值的分散程度。

实际上,如果采用方差的平方根,则会得到标准偏差!

或反之,如果将标准偏差乘以自身,就可以得到方差!

#方差(每个值减去平均值的结果取平方,然后除以总数)
va = np.var(value)
print(va)

结果:

1118.0661157024792

注意:

标准偏差通常用符号Sigma:σ

方差通常用符号Sigma Square: σ2

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值