On Knowledge Inflation: 知识通胀时代来临, 及为什么员工动力不足是伪命题

客户提到说我们也希望员工能提高自己, 可总是有人动力不足. 徐昊又讲了一遍如何散布恐慌. 基本的论述如下:

知识在加速贬值. 你花了几年时间积累的知识, 现在学校都已经开始教了, 比如有的学校都开始讲敏捷了, 作为软件工程的课程内容. 换句话说, 一个毕业生在技能上已不输一个工作几年的人, 而起薪要低的多.

事实上, 知识通胀时代已经来临. 大家知道货币超发会引发通货膨胀, 可现在每个行业每天都在产生大量的知识. 各种前所未有, 想都想不到的技能技巧技术海水般涌现出来, 并借助互联网迅速传播. 你辛辛苦苦积累下来的知识淹没在这片汪洋中, 不值一提.

知识的获取速度在提高, 门槛在降低, 过去千军万马过独木桥, 现在条条大路通学校. 一个人, 只要能听能看能说能写, 就能学到你过去需要在课堂上, 需要跟名师才能学到的知识.

就像你管理你的资产避免被通胀稀释一样, 你也必须管理你的知识. 赚钱相当于学新知识, 而投资组合就相当于你的知识结构, 学习策略. 投资中有长线短线, 你的知识结构也得考虑哪些是应该长期投入让自己更专业, 哪些是短期需要快速掌握避免落伍

换句话讲, 不学习, 就相当于守着你现在的钱, 不投资, 也不再赚新的. 而很快, 你的钱会迅速贬值.

所谓员工动力不足, 只是还没有认识到严峻形势而已. 就像你赚钱赚到退休, 学习也至少要到退休

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值