数据特征筛选
通过相关性
corrmat = X.corr()
f,ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, square=True)
从这里可以发现每个特征彼此之间的相关性。
k = 10
f, ax = plt.subplots(figsize=(12, 9))
cols = corrmat.nlargest(k, 'status').index
data = X[cols]
cm = pd.DataFrame(data).corr()
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, square=True, annot=True, fmt='.2f', annot_kws={'size':10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()
这里我选取了与‘status’最相关的10个特征
通过随机森林筛选特征
from sklearn.ensemble import RandomForestClassifier
feat_la