金融数据2

本文介绍了金融数据中进行特征筛选的三种方法:通过相关性分析选取与目标变量'status'最相关的10个特征;利用随机森林筛选出49个重要特征;以及基于IV值进行特征选择。内容为初学者的学习心得,参考了相关博客资源。
摘要由CSDN通过智能技术生成

数据特征筛选

通过相关性

corrmat = X.corr()
f,ax = plt.subplots(figsize=(12, 9))
sns.heatmap(corrmat, square=True)


从这里可以发现每个特征彼此之间的相关性。

k = 10
f, ax = plt.subplots(figsize=(12, 9))
cols = corrmat.nlargest(k, 'status').index
data = X[cols]
cm = pd.DataFrame(data).corr()
sns.set(font_scale=1.25)
hm = sns.heatmap(cm, cbar=True, square=True, annot=True, fmt='.2f', annot_kws={'size':10}, yticklabels=cols.values, xticklabels=cols.values)
plt.show()

在这里插入图片描述
这里我选取了与‘status’最相关的10个特征

通过随机森林筛选特征

from sklearn.ensemble import RandomForestClassifier
feat_la
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值