剑指--滑动窗口的最大值

剑指–滑动窗口的最大值

1,题目:

在这里插入图片描述
2,思路:

方法一:双端队列:(其实用到了单调队列)

1,初始化: 双端队列 deque ,结果列表 res ,数组长度 n ;
2,滑动窗口: 左边界范围 i∈[1−k,n+1−k] ,右边界范围 j∈[0,n−1] ;
若 i>0 且 队首元素 deque[0] == 被删除元素 nums[i−1] :则队首元素出队;
删除 deque 内所有<nums[j] 的元素,以保持 deque 递减;
3,将nums[j] 添加至 deque 尾部;
4,若已形成窗口(即 i≥0 ):将窗口最大值(即队首元素deque[0] )添加至列表res 。
5,返回值: 返回结果列表 res 。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
方法二:不使用双端队列:

  • maxInd记录每次最大值的下标,max记录最大值
  • 判断最大值下标是否在滑动窗口的范围内
    • 存在就只需要比较最后面的值是否大于上一个窗口最大值
    • 更新最大值下标
  • 如果不在就重新寻找当前窗口最大值

3,代码:

方法一:双端队列:(其实用到了单调队列)

//双端队列:(其实用到了单调队列)
/*

1,初始化: 双端队列 deque ,结果列表 res ,数组长度 n ;
2,滑动窗口: 左边界范围 i∈[1−k,n+1−k] ,右边界范围 j∈[0,n−1] ;
   若 i>0 且 队首元素 deque[0] == 被删除元素 nums[i−1] :则队首元素出队;
   删除 deque 内所有<nums[j] 的元素,以保持 deque 递减;
3,将nums[j] 添加至 deque 尾部;
4,若已形成窗口(即 i≥0 ):将窗口最大值(即队首元素deque[0] )添加至列表res 。
5,返回值: 返回结果列表 res 。


*/

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        if(nums.length == 0 || k == 0) 
            return new int[0];
        Deque<Integer> deque = new LinkedList<>();
        int[] res = new int[nums.length - k + 1];
        for(int j = 0, i = 1 - k; j < nums.length; i++, j++) {
            if(i > 0 && deque.peekFirst() == nums[i - 1]) 
                deque.removeFirst(); // 删除 deque 中对应的 nums[i-1]
            while(!deque.isEmpty() && deque.peekLast() < nums[j]) 
                deque.removeLast(); // 保持 deque 递减
            deque.addLast(nums[j]);
            if(i >= 0) 
                res[i] = deque.peekFirst();  // 记录窗口最大值
        }
        return res;
    }
}

方法二:不使用双端队列:

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        int len = nums.length;
        if (len == 0){
            return new int[0];
        }
        //定义结果数组
        int[] res = new int[len - k + 1];
        //maxInd记录每次最大值的下标,max记录最大值
        int maxInd = -1, max = Integer.MIN_VALUE;

        for (int i = 0; i < len - k + 1; i++) {
            //判断最大值下标是否在滑动窗口的范围内
            if (maxInd >= i){
                //存在就只需要比较最后面的值是否大于上一个窗口最大值
                if (nums[i + k - 1] > max){
                    max = nums[i + k - 1];
                    //更新最大值下标
                    maxInd = i + k - 1;
                }
            }
            //如果不在就重新寻找当前窗口最大值
            else {
                max = nums[i];
                for (int j = i; j < i + k; j++) {
                    if (max < nums[j]) {
                        max = nums[j];
                        maxInd = j;
                    }
                }
            }
            res[i] = max;
        }
        return res;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值