参考书:Analysis of Financial Time Series 2nd Edition
研究模型的基本思路:
1.给出时间序列模型
2.计算均值函数,协方差函数、自相关函数
3.平稳性的条件
4.基于观测数据模型中的参数
5.模型诊断
6.模型评价
一般线性模型
滑动平均过程
q阶滑动平均过程
MA(1)、MA(2)
MA(q)
模型识别:自相关函数(ACF)。
自回归过程
p阶自回归过程
AR(1)、AR(2)
AR(q)
模型识别:偏相关函数(PACF),信息准则函数AIC、BIC
模型检验:如果模型是充分的,则其残差序列应是白噪声。对于AR§模型,使用Ljung-Box统计量来检验,渐进服从自由度为m-g的 χ 2 \chi^2 χ2分布,其中g是所用模型中AR系数的个数。
拟合优度:常用 R 2 R^2 R2统计量,定义为: R 2 = 1 − R^2=1- R2=1−残差平方和/总的平方和。对于平稳AR§,假设有T个观测,则
值越大,表示模型拟合越好。
自回归滑动平均过程
ARMA(1,1)