一、时间序列(2_1)AR、MA、ARMA

参考书:Analysis of Financial Time Series 2nd Edition

研究模型的基本思路:

1.给出时间序列模型

2.计算均值函数,协方差函数、自相关函数

3.平稳性的条件

4.基于观测数据模型中的参数

5.模型诊断

6.模型评价

一般线性模型

在这里插入图片描述
在这里插入图片描述

滑动平均过程

q阶滑动平均过程

在这里插入图片描述

MA(1)、MA(2)

在这里插入图片描述
在这里插入图片描述

MA(q)

在这里插入图片描述

模型识别:自相关函数(ACF)。

自回归过程

p阶自回归过程

在这里插入图片描述

AR(1)、AR(2)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

AR(q)

在这里插入图片描述
在这里插入图片描述

模型识别:偏相关函数(PACF),信息准则函数AIC、BIC

模型检验:如果模型是充分的,则其残差序列应是白噪声。对于AR§模型,使用Ljung-Box统计量来检验,渐进服从自由度为m-g的 χ 2 \chi^2 χ2分布,其中g是所用模型中AR系数的个数。

拟合优度:常用 R 2 R^2 R2统计量,定义为: R 2 = 1 − R^2=1- R2=1残差平方和/总的平方和。对于平稳AR§,假设有T个观测,则

在这里插入图片描述
在这里插入图片描述
值越大,表示模型拟合越好。
在这里插入图片描述
在这里插入图片描述

自回归滑动平均过程

在这里插入图片描述

ARMA(1,1)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

模型识别:利用推广的自相关函数(EACF)确定阶数。

模型检验:使用残差的Ljung-Box统计量来检验模型的充分性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值