摆方格

摆方格

时间限制:1000 ms  |  内存限制:65535 KB

难度:2

描述

  给你一个n*n的方格,每个方格里的数必须连续摆放如  

 

 

,下图为不连续的,请输出从左上角到右下角的对角线上的最大和   

 

输入

输入包含多组测试数据。
每一行包括一个数据n,表示n*n的方格(保证所有数据在2^64范围内且n>0)

输出

每行输出占一行,输出最大的对角线之和。

样例输入

1
2
3

样例输出

1
6
19

 

 

 

个人理解:(找规律)

n=1       1                                               sum=1

n=2        1   2 

               4   3                                         sum=4+2(4/2)

n=3        1   2   3

               8   7   4

               9   6   5                                    sum=9+7+3(7/2)

n=4        16    15    10    9

               1      14    11    8

               2      13    12    7

               3       4       5     6                     sum=16+14+12+6(12/2)

规律为:sum=n*n + n*n-2 + n*n-2*2+……+ n*n-2*(n-2)+最后一个数/2

即sum=等差数列(n-1)项之和+最后一项/2

运行结果:

 

代码:

此为自己根据规律所写

#include<stdio.h>
int main()
{
    long long n;
    while(scanf("%lld",&n)!=EOF)
    {
        long long i,j,k,sum;
        k=n*n;
        sum=0;
        for(i=0;i<n-1;i++)
        {
            sum+=k;
            k-=2;
        }
        k+=2;
        k/=2;
        sum+=k;
        printf("%lld\n",sum);
    }
    return 0;
}

此为其他人的优化:

#include<stdio.h>
int main()
{
	long long  n;
	while(scanf("%lld",&n)!=EOF)
	{
		if(n&1)
		printf("%lld\n",n*n*n-3*n*n/2+2*n-1);
		else
		printf("%lld\n",n*n*n-3*n*n/2+2*n);
	}
	return 0;
}

两种代码运行结果根据先后顺序在上面截图显示

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值