POJ 3162 Walking Race 树的直径+线段树

题目链接

http://poj.org/problem?id=3162

题意

给定一颗含n个结点的树,求每个点能走到的最远距离,挑选连续的k天 最长与最短之差不超过m,求最大k

思路

先求树的直径,然后线段树维护

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<math.h>
#include<set>
#include<map>
#define ll long long
using namespace std;
const int INF = ( 2e9 ) + 2;
const ll maxn = 1e6+10;
struct edge
{
    int v,w,next;
} e[maxn*2];
struct node
{
    int Max,Min;
    int l,r;
}t[maxn*4];
int head[maxn];
int tot;
int d[2][maxn],Max[maxn];
bool vis[maxn];
int n,m;
void build(int root,int l,int r)
{
    t[root].l=l;
    t[root].r=r;
    if(l==r)
    {
        t[root].Max=t[root].Min=Max[l];
        return;
    }
    int mid=(l+r)>>1;
    build(2*root,l,mid);
    build(2*root+1,mid+1,r);
    t[root].Max=max(t[root*2].Max,t[root*2+1].Max);
    t[root].Min=min(t[root*2].Min,t[root*2+1].Min);
}
int query(int root,int ql,int qr,bool mode)
{
    int l=t[root].l,r=t[root].r;
    if(l>=ql&&r<=qr)
    {
        if(mode)return t[root].Max;
        else return t[root].Min;
    }
    if(l>qr||r<ql)return 0;
    int mid = (l+r)>>1;
    if(qr<=mid)
    return query(2*root,ql,qr,mode);
    else if(ql>mid)
    return query(2*root+1,ql,qr,mode);
    else
    {
        if(mode)
        return max(query(2*root,ql,qr,mode),query(2*root+1,ql,qr,mode));
        else
        return min(query(2*root,ql,qr,mode),query(2*root+1,ql,qr,mode));
    }
}
void init()
{
    memset(head,-1,sizeof(head));
    memset(vis,0,sizeof(vis));
    tot=0;
    d[0][1]=0;
}
void add(int u,int v,int w)
{
    e[tot].v=v;
    e[tot].w=w;
    e[tot].next=head[u];
    head[u]=tot++;
}
// 连续的k天 最长与最短之差不超过m
void dfs(int u,int *d)
{
    vis[u]=true;
    for(int i=head[u]; i!=-1; i=e[i].next)
    {
        int v=e[i].v,w=e[i].w;
        if(vis[v])continue;
        d[v]=d[u]+w;
        dfs(v,d);
    }
}
int solve()
{
    dfs(1,d[0]);
    int mx=-INF,pos;
    memset(vis,0,sizeof(vis));
    for(int i=1; i<=n; i++)
        if(mx<d[0][i])
        {
            mx=d[0][i];
            pos=i;
        }
    d[0][pos]=0;
    memset(vis,0,sizeof(vis));
    dfs(pos,d[0]);
    mx=-INF;
    for(int i=1;i<=n;i++)
        if(mx<d[0][i])
        {
            mx=d[0][i];
            pos=i;
        }
    d[1][pos]=0;
    memset(vis,0,sizeof(vis));
    dfs(pos,d[1]);
    for(int i=1;i<=n;i++)
    Max[i]=max(d[0][i],d[1][i]);
    build(1,1,n);
    int i=1,j=1;
    int ans=-INF;
    for(;j<=n;j++)
    {
        while(query(1,i,j,1)-query(1,i,j,0)>m)i++;
        ans=max(ans,j-i+1);
    }
    return ans;
}
int main()
{
    int u,v,w;
    while(~scanf("%d%d",&n,&m))
    {
        init();
        for(int i=2; i<=n; i++)
        {
            scanf("%d%d",&v,&w);
            add(i,v,w);
            add(v,i,w);
        }
        printf("%d\n",solve());
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值