题目链接
https://vjudge.net/problem/HDU-4714
题意
给一个图,定义环为有n个结点,n条边的图。在图中每删和每加一条边需要花费,求用最少的花费将图变成环。
思路
思路比较难想到:看了题解才知道的。
对于非根结点,假设其后代分支数为f,需要先将结点与其父亲断开,然后断开f-2个分支,将断开的分支再连成一条链,共需要花费1+2*(f-2),在加上与上一条链的链接,总共需要2+2*(f-2) = 2*(f-1)
根结点没有父亲同理需要2(f-2)花费
连成一条链后,需要首尾相连再花费1
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<set>
#include<map>
#define ll long long
using namespace std;
const int INF = ( 2e9 ) + 2;
const ll maxn = 1e6+100;
struct edge
{
int v,Next;
}e[maxn*2];
int head[maxn];
int tot,ans;
bool mark[maxn];
void add(int u,int v)
{
e[tot].v=v;
e[tot].Next=head[u];
head[u]=tot++;
}
void init()
{
memset(head,-1,sizeof(head));
tot=ans=0;
}
int dfs(int u,int fa)
{
int f=0;
for(int i=head[u];i!=-1;i=e[i].Next)
{
int v=e[i].v;
if(v==fa)continue;
f+=dfs(v,u);
}
if(f>1)
{
if(fa==-1)ans=ans+f-2;
else ans=ans+f-1;
return 0;
}
else return 1;
}
int main()
{
int T,n,u,v;
scanf("%d",&T);
while(T--)
{
init();
scanf("%d",&n);
for(int i=0;i<n-1;i++)
{
scanf("%d%d",&u,&v);
add(u,v);
add(v,u);
}
dfs(1,-1);
ans=ans*2+1;
printf("%d\n",ans);
}
}