组合数学基础

这篇博客介绍了组合数学的基础理论,包括Basic Enumeration中的Sum Rule、Product Rule和 Bijection Rule,并通过这些理论解决Tuples、Functions、Subsets、Subsets of fixed size、Binomial Coefficient、Compositions of an integer和Multisets等问题,以及探讨了Partition of a set的概念。
摘要由CSDN通过智能技术生成


自去年毕业以来,研一的生活已经过去了大半,快到研二了,时间飞逝啊,总感觉自己啥都没做就结束了,没有任何的提高,所以决定选们叫难的课来提高下自己,同学推荐了组合数学,上了几节课发现,智商有点不够用啊,可利用的复习、预习时间又少,所以决定写博客来强化记忆,巩固一下————

        废话不多说,下面就来介绍组合数学的基本理论:(注:有些单词不好翻译,所以用英文代替)

        本篇主要内容有两个:(1)Basic Enumeration   (2)The twelvfold way

        下面先介绍Basic Enumeration:主要有三个基本的枚举理论:

1.sum rule:假设有两个不相交的确定集合S和T,那它们联合的势就是:

2.product rule:对于任何确定的集合S和T,它们的笛卡尔乘积的势为:

3.bijection rule:如果确定集合S和T存在一个双射,则有:

下面就是应用上面的理论来解决一些基础的枚举问题:

(1)Tuples:我们数[m]集合的n元组,形式上就是数元素的个数,(注意:)。不难看出,。(可以用product rule来证明这个结论:)。

(2)Functions:我们数从[n]到[m]的函数个数,即:

可以定义一个元组,使它,这就在Functions和上面的Tuples建立了双射关系,根据双射定理,它们的势相同,都为

(3)Subsets:设集合有n个元素,成为该集合的幂集。下面给出一个组合的证明。对于幂集中的每个子集T,都可以用一个n维比特向量来代替,,0代表元素不在子集中,1则相反。这样就定义了一个映射:,该映射是双射的,所以有

我们把建立集合和可数集合的双射称为组合证明。

(4)Subsets of fixed size:令集合S为,定义为所有元素个数为k的子集个数,,我们定义:。则有下面的理论:

该式就是相当于从n个元素中取出k个元素,由于是集合,元素没有顺序,因此还要除以k!。

(5)Binomial coefficient:叫做二项式系数。

(有个著名的二项式理论:

(6)Compositions of an integer:我们定义n的一个组成是一个有序的正整数的和,k-composition代表k个数的和,n的一个k组合就是一个k元组,,得:。这个问题我们可以看成有n个同样的小球排成一行,要在求中间插入k-1个隔板,把求分成k份,正好是k个正整数,因此有

当放宽限制时,使k元组元素可以为0,则可以令,这样就可以转化为n+k的k-compositions,结果为:

(7)MultiSets:k子集定义为集合S的k个元素组成的集合,但是k个元素不可以重复,现在定义多重集,允许集合中的元素可以重复。定义集合S的k-multisets为。k-multisets的势为:。k-multisets就相当于每个元素的重数加起来等于k,应用上面的结论有:

(8)Partition of a set:定义为n元集合的k元划分,,该等式可以理解为n作为一个单独的元素集合,还是和其他元素共同构成集合。

下面列出twelvfold的表格:balls into bins


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值