经典参数估计的Cramer-Rao界

本文探讨了经典参数估计中的Cramer-Rao界(CRB),包括标量参数估计的概念,如随机参数和非随机参数的估计。CRB提供了估计误差的下界,对于非随机参数,它给出了无偏估计的方差下限,而对于随机参数,CRB适用于任何估计量。Cramer-Rao界在无线通信系统的信道估计问题中具有重要应用。
摘要由CSDN通过智能技术生成

经典参数估计的Cramer-Rao界

无线通信系统中,常需根据观测量对未知参数进行估计,如信道估计问题。在参数估计问题中,包括参数空间(标量/向量,随机参数/非随机参数)、从参数空间到观测空间的概率映射、观测空间和估计规则。本文首先介绍标量参数估计,包括随机参数和非随机参数;接着,介绍如何度量估计误差以及估计误差的Cramer-Rao界(CRB)和贝叶斯CRB(BCRB)。

标量参数估计的概念

(标量)参数估计即根据观测量 r \mathbf{r} r估计未知参数 a a a。根据 a a a是否是随机变量,可分为随机参数估计和非随机参数估计。下面首先介绍随随机参数估计。

随机参数

参数估计通常以最小化某一代价函数 C ( a , a ^ ( r ) ) C(a,\hat{a}(\mathbf{r})) C(a,a^(r))作为准则,其中 a ^ ( r ) \hat{a}(\mathbf{r}) a^(r)为对参数 a a a的估计。由于代价函数通常用于度量 a a a a ^ ( r ) \hat{a}(\mathbf{r}) a^(r)之间的差异,因此常常可表示为 C ( a , a ^ ( r ) ) = C ( a − a ^ ( r ) ) = C ( a ϵ ) C(a,\hat{a}(\mathbf{r}))=C(a-\hat{a}(\mathbf{r}))=C(a_\epsilon) C(a,a^(r))=C(aa^(r))=C(aϵ),其中 a ϵ a_\epsilon aϵ为估计误差。常见的代价函数包括:均方误差 C ( a ϵ ) = a ϵ 2 C(a_\epsilon)=a_\epsilon^2 C(aϵ)=aϵ2,绝对误差 C ( a ϵ ) = ∣ a ϵ ∣ C(a_\epsilon)=|a_\epsilon| C(aϵ)=aϵ和均匀代价函数 C ( a ϵ ) = { 0 , ∣ a ϵ ∣ ≤ Δ 2 1 , ∣ a ϵ ∣ > Δ 2 C(a_\epsilon)=\begin{cases}0,|a_\epsilon|\leq\frac{\Delta}{2}\\1,|a_\epsilon|>\frac{\Delta}{2}\end{cases} C(aϵ)={ 0,aϵ2Δ1,aϵ>2Δ。代价函数的选择,一方面应度量用户的满意程度,另一方面应具有较为简洁的形式以便于处理问题。

确定代价函数和先验概率后,风险可以表示为,
R ≜ E [ C ( a , a ^ ( r ) ) ] = ∫ − ∞ ∞ d a ∫ − ∞ ∞ C ( a , a ^ ( r ) ) P a , r ( a , r ) d r , \mathcal{R}\triangleq\mathbb{E}\left[C(a,\hat{a}(\mathbf{r}))\right]=\int_{-\infty}^{\infty}da\int_{-\infty}^{\infty}C(a,\hat{a}(\mathbf{r}))P_{a,\mathbf{r}}(a,\mathbf{r})d\mathbf{r}, RE[C(a,a^(r))]=daC(a,a^(r))Pa,r(a,r)dr,
即在随机变量 a a a和观测变量 r \mathbf{r} r上的平均代价。

当代价函数不同时,基于最小化风险的准则,可以根据观测 r \mathbf{r} r得出对 a a a的最佳估计。例如,均方误差准则下的风险可表示为,
R m s = ∫ − ∞ ∞ d a ∫ −

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值