ElasticeSearch用法(使用Transport操作ES服务器),增删改查和批量操作

ElasticeSearch用法(使用Transport操作ES服务器),增删改查和批量操作

1、Lucene
​ 单独使用Lucene实现站内搜索需要开发的工作量较大,主要表现在:索引维护、索引性能优化、搜索性能优化等,因此不建议采用。

2、Solr
​ Solr 是Apache下的一个顶级开源项目,采用Java开发,它是基于Lucene的全文搜索服务器。Solr提供了比Lucene更为丰富的查询语言,同时实现了可配置、可扩展,并对索引、搜索性能进行了优化。
​ Solr可以独立运行,运行在Tomcat、Jetty等这些Servlet容器中,Solr 索引的实现方法很简单,用 POST 方法向 Solr服务器发送一个描述 Field 及其内容的 XML 文档,Solr根据xml文档添加、删除、更新索引 。Solr 搜索只需要发送HTTP GET 请求,然后对 Solr 返回Xml、json等格式的查询结果进行解析,组织页面布局。Solr不提供构建UI的功能,Solr提供了一个管理界面,通过管理界面可以查询Solr的配置和运行情况。

3、Elasticsearch
​ Elasticsearch是一个开源的高扩展的分布式全文检索引擎,它可以近乎实时的存储、检索数据;本身扩展性很好,可
以扩展到上百台服务器,处理PB级别的数据。

​ 核心:

​ 1、数据存储 海量 实时

​ 2、数据检索、实时


ElasticSearch初体验
搭建ElasticSearch服务器

  1. ​ 基于Docker搭建ES服务器 端口号:9200
  2. ​ 基于Docker搭建ES-Head 可视化网页 端口号:9100
  3. ​ 客户端进行连接ElasticSearch的时候 端口号为:9300

ElasticSearch数据模型
​ 关系数据库 ⇒ 数据库 ⇒ 表 ⇒ 行 ⇒ 列(Columns)

​ Elasticsearch ⇒ 索引(Index) ⇒ 类型(type) ⇒ 文档(Docments) ⇒ 字段(Fields)

ElasticSearch存储的核心
​ 索引:存储数据的对象 类是数据库中的数据库,可以存储多种类型的数据

​ 类型:数据的类型 类是之前数据库中表

​ id:数据的唯一值

​ source:存储的内容,一般都是JSON字符串

Java操作ES服务器有两种方式

  1. ​ ES的客户端 Transport
  2. ​ Spring Dat Elasticsearch

Spring Data 系列:Spring给出的操作一切数据的框架

  1. ​ Spring Data JPA
  2. ​ Spring Data Redis
  3. ​ Spring Data ElasticSearch

存储数据:
1、数据库 关系型数据库
​ Mysql Oracle

2、NO-SQL数据库
​ Redis

3、全文检索技术(搜索引擎技术)
​ ElasticSearch

代码实现
1、依赖Jar(Transport)的依赖

        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch-x-content</artifactId>
            <version>6.5.4</version>
        </dependency>

        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>transport</artifactId>
            <version>6.5.4</version>
        </dependency>

2、代码实现
​ 1、创建设置对象 指定集群名称

​ 2、设置服务器地址 创建客户端对象

​ 3、实现操作 增删改查

​ 4、关闭销毁

基于Transport代码实现基本操作
基于Transport代码实现新增和修改(prepareIndex)

/**
 * 基于Transport代码实现新增和修改
 */
public class Transport_Main{
    public static void main(String[] args) {
        //1、创建设置对象
        Settings settings=Settings.builder().put("集群key","集群名称").build();

        //创建来创建对象
        Client client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(new InetSocketAddress("服务器ip",9300)));

        /**
         * 操作Es服务器,如果此索引存在则替换指定相同类型和id的索引和文档内容
         * 第一个参数:索引名称
         * 第二个参数:类型
         * 第三个参数:文档id,在整个索引的相同类型中是唯一的,id存在就修改,id不存在就创建
         * XContentType.JSON : 指定文档内容为json字符串格式
         */
        client.prepareIndex("javaandxuan","fodd","2").
                setSource("{\"id\":2,\"name\":\"轩轩喜欢敲代码\"}",XContentType.JSON).get();
        client.close();
    }
}

运行过后,可以看到javaand选的索引中,有数据

在这里插入图片描述

因为在代码中写JSON字符串,要用到转义字符,写起来比较麻烦,也可以使用fastjson,把代码中的实例对象转化为JSON字符串。也可以减少我们手写JSON字符串格式不对引起的报错。

        String offerString = JSON.toJSONString(实例对象);//使用 fastjson  进行转换字符串,需要依赖jar包

        client.prepareIndex("xuanandjava","offer",offer.getId()+"").
                setSource(offerString, XContentType.JSON).get();


​ 运行后可以看到指定的索引中,一样有数据

在这里插入图片描述

基于Transport代码实现修改(prepareUpdate)

public class Transport2_Main {
    public static void main(String[] args) {
        //1、创建设置对象
        Settings settings=Settings.builder().put("集群key","集群名称").build();

        //创建来创建对象
        Client client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(new InetSocketAddress("服务器ip",9300)));

        Offer offer = new Offer();
        offer.setAddress("轩轩");
        offer.setMoney(2500);
        offer.setName("轩轩非常喜欢敲代码");
        offer.setId(10);

        String offerString = JSON.toJSONString(offer);//使用 fastjson  进行转换字符串,需要依赖jar包

        //修改的时候,若指定的索引,类型或者id不对,则报错 DocumentMissingException
        UpdateResponse updateResponse = client.prepareUpdate("xuanandjava", "offer", offer.getId() + "").
                setDoc(offerString, XContentType.JSON).get();
        
        System.out.println("听说成功:"+updateResponse.status().name());//拿到是否修改成功
        client.close();

    }
}


基于Transport代码实现简单查询(prepareGet)

public class Transport2_Main {
    public static void main(String[] args) {
        //1、创建设置对象
        Settings settings=Settings.builder().put("cluster.name","qfjava").build();

        //创建来创建对象
        Client client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(new InetSocketAddress("服务器ip",9300)));


        Offer offer = new Offer();
        offer.setAddress("轩轩");
        offer.setMoney(2500);
        offer.setName("轩轩非常喜欢敲代码");
        offer.setId(10);

        //查询
        GetResponse documentFields = client.prepareGet("xuanandjava", "offer", offer.getId() + "").get();
        
        String sourceAsString = documentFields.getSourceAsString();//拿到返回的字符串(JSON)
        //把字符串转为实例,因为我们拿到的字符串是JSON格式的,所以使用fastjson来转换为实例对象。
        Offer offerPojo = JSON.parseObject(sourceAsString, Offer.class);
        System.out.println("拿到的对象是:"+offerPojo);

        client.close();

    }
}

下面可以看到打印出来的实例,和ES服务器中,查询的一样。(xuanandjava索引;offer类型;id为1文本)

在这里插入图片描述

 在这里插入图片描述

基于Transport代码实现删除(prepareDelete)

public class Transport2_Main {
    public static void main(String[] args) {
        //1、创建设置对象
        Settings settings=Settings.builder().put("cluster.name","qfjava").build();

        //创建来创建对象
        Client client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(new InetSocketAddress("服务器ip",9300)));


        Offer offer = new Offer();
        offer.setAddress("轩轩");
        offer.setMoney(2500);
        offer.setName("轩轩非常喜欢敲代码");
        offer.setId(10);


        //删除指定索引;指定类型;指定id 的文档
        DeleteResponse deleteResponse = client.prepareDelete("xuanandjava", "offer", offer.getId() + "").get();
        String name = deleteResponse.status().name();//拿到删除的状态
        System.out.println("删除结果为:"+name);

        client.close();

    }
}


下面可以看到,拿到的状态是:OK

在这里插入图片描述

Elasticsearch条件查询
Transport提供了常用的查询

批处理

  1. RangeQueryBuilder 范围查找 gt:大于 lt:小于 gte:大于等于 lte:小于等于
  2. WildcardQueryBuilder 模糊查询 使用*表示任意字符
  3. TermQueryBuilder 精确查询

BoolQueryBuilder 布尔类型查询 用于多条件的拼接(可用使用以下三个方法进行拼接条件)

  • must 必须的 文档必须满足匹配条件
  • must_not 文档必须不匹配条件
  • should 或者 文档只要满足一个或多个条件

代码示例
说明:查询索引为 es1902 文档id 大于1 小于 10 类型为 offer 的文档内容,

​ 结果以 id 为 倒序(SortOrder.DESC)

public class Transport3_Main {
    public static void main(String[] args) {
        //创建设置对象
        Settings settings=Settings.builder().put("cluster.name","qfjava").build();

        //创建来创建对象
        Client client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(new InetSocketAddress("服务器ip",9300)));

        /**
         * 操作ES服务器(条件查询),创建查询内容
         * gt:大于
         * gtE:大于等于
         * lt:小于
         * lte:小于等于
         * 这个例子的意思为 查询文档id 大于1 小于10的文档内容
         */
        RangeQueryBuilder rangeQueryBuilder = QueryBuilders.rangeQuery("id").gt("1").lt("10");

        /**
         * 创建条件拼接器,一个条件的时候可用不用这个,多个条件需要使用拼接器
         */
        BoolQueryBuilder booleanQueryBuilder = QueryBuilders.boolQuery();
        booleanQueryBuilder.must(rangeQueryBuilder);

        //创建查询对象
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(booleanQueryBuilder);

        //执行条件查询  链式编程

        SearchResponse searchResponse = client.prepareSearch("es1902").//指定查询的索引名称
                setTypes("offer").//设置查询的类型,如果不写的画,就是查询全部
                addSort("id",SortOrder.DESC).//设置排序,以id为倒序
                setQuery(searchSourceBuilder.query()).//设置查询条件
                get();//执行获取查询结果

        //解析查询结果
        SearchHits hits = searchResponse.getHits();
        SearchHit[] searchHit = hits.getHits();

        //遍历数组
        for ( SearchHit s : searchHit ){
            System.out.println(s.getSourceAsString());
        }
        client.close();

    }


Elasticsearch模糊查询
注:ElasticSearch不支持中,如果想要支持中文,需要依赖 **IK分词 **插件,这个插件主要用来语义分析

public class Transport3_Main_MoHuQuery {
    public static void main(String[] args) {
        //创建设置对象
        Settings settings=Settings.builder().put("cluster.name","qfjava").build();

        //创建来创建对象
        Client client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(new InetSocketAddress("服务器ip",9300)));

        /**
         * 模糊查询,查询文档内容包含2的
         */
        WildcardQueryBuilder wildcardQueryBuilder = QueryBuilders.wildcardQuery("name", "*2*");
         //单词查询 精确查询
        //TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("id","101");

        /**
         * 创建条件拼接器,一个条件的时候可用不用这个,多个条件需要使用拼接器
         */
        BoolQueryBuilder booleanQueryBuilder = QueryBuilders.boolQuery();
        booleanQueryBuilder.must(wildcardQueryBuilder);

        //创建查询对象
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(booleanQueryBuilder);

        //执行条件查询  链式编程

        SearchResponse searchResponse = client.prepareSearch("es1902").//指定查询的索引名称
                setTypes("offer").//设置查询的类型,如果不写的画,就是查询全部
                addSort("id",SortOrder.DESC).//设置排序,以id为倒序
                setQuery(searchSourceBuilder.query()).//设置查询条件
                get();//执行获取查询结果

        //解析查询结果
        SearchHits hits = searchResponse.getHits();
        SearchHit[] searchHit = hits.getHits();

        //遍历数组
        for ( SearchHit s : searchHit ){
            System.out.println(s.getSourceAsString());
        }
        client.close();

    }
}


ElasticeSearch批量处理
使用 BulkRequestBuilder 来实现批量处理,这个相比循环get(),减少了于ElasticeSearch的交互次数,提高了性能

public class Transport3_Main_PIChuLi {
    public static void main(String[] args) {
        //创建设置对象
        Settings settings=Settings.builder().put("cluster.name","qfjava").build();

        //创建来创建对象
        Client client = new PreBuiltTransportClient(settings).addTransportAddress(new TransportAddress(new InetSocketAddress("服务器ip",9300)));

        /**
         * 操作ES服务器
         * 实现批处理
         */
        BulkRequestBuilder bulkRequestBuilder = client.prepareBulk();
        int xuan = 1;
        for (int i = 1 ; i<10001 ; i++){
            Offer offer = new Offer();
            offer.setAddress("上海");
            offer.setMoney(15000);
            offer.setName("轩轩");
            offer.setId(10);
            String s = JSON.toJSONString(offer);
            bulkRequestBuilder.add(client.prepareIndex("xuanandjava", "offer", xuan++ + "").
                    setSource(s, XContentType.JSON));
        }

        //执行操作
        BulkResponse bulkItemResponses = bulkRequestBuilder.get();
        String name = bulkItemResponses.status().name();
        System.out.println("批处理结果为:"+name);
        
        client.close();
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值