什么是异构数据?

异构数据顾名思义就是不同结构的数据,异构数据体现在五个层次上:
1.计算机体系结构的异构;数据的物理存储来源于不同体系结构的计算机中,如:大型机、小型机、工作站、PC或嵌入式系统中。
2.操作系统的异构;数据的存储来源于不同的操作系统,如:Unix、Windows、Linux、OS/400等。
3.数据格式的异构;数据的存储管理机制不同,可以是关系型数据库系统,如:Oracle、SQL Server、DB2等,也可以是文件行二维数据,如:txt、CSV、XLS等。
4.数据存储地点异构;数据存储在分散的物理位置上,此类情况大多出现在大型机构中,如:销售数据分别存储在北京、上海、日本、韩国等多个分支机构的本地销售系统中。
5.数据存储的逻辑模型异构;数据分别在不同的业务逻辑中存储和维护,从而相同意义的数据存在表现的异构;如:独立的销售系统和独立的采购系统中存在部门的编码不一致等。
异构数据往往不是一个层面的异构,而是在多个层面上都存在异构。
异构数据整合的目标就在于实现不同结构的数据之间的数据信息资源、硬件设备资源和人力资源的合并和共享。其中关键的一点就是以分散的局部的数据为基础,通过各种工具和处理逻辑建立全局的统一的数据或视图。
101 异构数据采集技术的原理是通过获取软件系统的底层数据交换和网络流量包,进行包流量分析和使用仿真技术采集到应用数据,并且输出结构化数据。所以,它能做到无需软件厂商接口,异构数据直接采集,解决了和厂商协调难、接口费用高、实施周期长等问题。

引用中未提及多模态学习融合异构数据的具体方法。不过,一般来说,多模态学习融合异构数据常见的方法有以下几种: ### 早期融合 早期融合也叫数据级融合,是在数据输入阶段就将不同模态的数据进行合并。例如,将图像的像素特征和文本的词向量特征拼接在一起,然后输入到一个统一的模型中进行处理。这种方法简单直接,能够保留原始数据的信息,但可能会因为不同模态数据的尺度、分布差异较大,导致模型难以学习到有效的特征。 ```python import numpy as np # 假设 image_features 是图像特征,text_features 是文本特征 image_features = np.random.rand(100, 256) text_features = np.random.rand(100, 128) # 早期融合:特征拼接 early_fused_features = np.concatenate((image_features, text_features), axis=1) ``` ### 晚期融合 晚期融合也叫决策级融合,是先分别对不同模态的数据进行独立的处理和特征提取,得到各自的特征表示或预测结果,然后在最后阶段将这些结果进行融合。例如,分别使用卷积神经网络(CNN)处理图像数据,使用循环神经网络(RNN)处理文本数据,最后将两个网络的输出结果通过投票、加权平均等方式进行融合。这种方法可以充分利用不同模态数据的特点,避免不同模态数据之间的干扰,但可能会丢失一些跨模态的信息。 ```python # 假设 image_prediction 是图像模型的预测结果,text_prediction 是文本模型的预测结果 image_prediction = np.random.rand(100, 10) text_prediction = np.random.rand(100, 10) # 晚期融合:加权平均 weight_image = 0.6 weight_text = 0.4 late_fused_prediction = weight_image * image_prediction + weight_text * text_prediction ``` ### 中间融合 中间融合也叫特征级融合,是在模型的中间层将不同模态的数据进行融合。例如,在 CNN 和 RNN 的中间层分别提取图像和文本的特征,然后将这些特征进行拼接或交互,再输入到后续的网络层进行处理。这种方法结合了早期融合和晚期融合的优点,既能够保留跨模态的信息,又可以避免不同模态数据之间的干扰。 ### 基于注意力机制的融合 注意力机制可以自动地学习不同模态数据之间的重要性权重,从而实现更加灵活和有效的融合。例如,在处理图像和文本数据时,注意力机制可以根据文本的内容动态地分配图像中不同区域的权重,使得模型更加关注与文本相关的图像区域。 ```python import torch import torch.nn as nn class AttentionFusion(nn.Module): def __init__(self, input_dim): super(AttentionFusion, self).__init__() self.attention = nn.Sequential( nn.Linear(input_dim, 1), nn.Sigmoid() ) def forward(self, image_features, text_features): combined_features = torch.cat((image_features, text_features), dim=1) attention_weights = self.attention(combined_features) fused_features = attention_weights * image_features + (1 - attention_weights) * text_features return fused_features ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值