MIT一牛人对数学在机器学习中的作用给的评述

本文探讨了数学在机器学习研究中的重要性,强调线性代数、统计学、微积分、偏微分方程、泛函分析、测度理论、拓扑学、微分流形、李群论和图论等数学分支在学习和视觉领域中的关键作用。学习和视觉领域是多种数学理论的交汇点,深入理解和应用数学能够促进研究的进展。
摘要由CSDN通过智能技术生成

转载自http://my.oschina.net/feedao/blog/52252,不过这个链接也是转载的,出处已经无从考证了。

感觉数学似乎总是不够的。这些日子为了解决research中的一些问题,又在图书馆捧起了数学的教科书。

从大学到现在,课堂上学的和自学的数学其实不算少了,可是在研究的过程中总是发现需要补充新的数学知识。Learning和Vision都是很多种数学的交汇场。看着不同的理论体系的交汇,对于一个researcher来说,往往是非常exciting的enjoyable的事情。不过,这也代表着要充分了解这个领域并且取得有意义的进展是很艰苦的。

记得在两年前的一次blog里面,提到过和learning有关的数学。今天看来,我对于数学在这个领域的作用有了新的思考。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值