10.19—动态规划 //最长公共子序列//防卫导弹//田忌赛马//计算矩阵连乘积//最长子序列的长度

这篇博客探讨了四个与动态规划相关的实际问题:1) 最长公共子序列的计算,2) 防卫导弹拦截策略,3) 田忌赛马的最优策略,以及4) 计算矩阵连乘积的最小乘法次数。通过这些例子,展示了动态规划在解决复杂问题中的应用。
摘要由CSDN通过智能技术生成

1.最长公共子序列

描述:一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X=<x1, x2,…, xm>,则另一序列Z=<z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列 <i1, i2,…, ik>,使得对于所有j=1,2,…,k有:

Xij = Zj
如果一个序列S即是A的子序列又是B的子序列,则称S是A、B的公共子序列。
求A、B所有公共子序列中最长的序列的长度。

输入:输入共两行,每行一个由字母和数字组成的字符串,代表序列A、B。A、B的长度不超过200个字符。

输出:一个整数,表示最长各个子序列的长度。格式:printf("%d\n");

输入样例

programming
contest

输出样例

2

#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;

int main(){
	int ans = 0;
    char a[205], b[205];
	int l[205][205] = {0};
	gets(a);
	gets(b);

	for(int i = 1; i <= strlen(a); i++){
		for(int j = 1; j <= strlen(b); j++){
			if(a[i-1] == b[j-1]){
			    l[i][j] = l[i-1][j-1] + 1;
			}
			else{
				l[i][j] = max(l[i][j-1], l[i-1][j]);
			}
		}
	}
	cout << l[strlen(a)][strlen(b)] << endl;
}

 

2.防卫导弹

描述:一种新型的防卫导弹可截击多个攻击导弹。它可以向前飞行,也可以用很快的速度向下飞行,可以毫无损伤地截击进攻导弹,但不可以向后或向上飞行。但有一个缺点,尽管它发射时可以达到任意高度,但它只能截击比它上次截击导弹时所处高度低或者高度相同的导弹。现对这种新型防卫导弹进行测试,在每一次测试中,发射一系列的测试导弹(这些导弹发射的间隔

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值