1.最长公共子序列
描述:一个给定序列的子序列是在该序列中删去若干元素后得到的序列。确切地说,若给定序列X=<x1, x2,…, xm>,则另一序列Z=<z1, z2,…, zk>是X的子序列是指存在一个严格递增的下标序列 <i1, i2,…, ik>,使得对于所有j=1,2,…,k有:
Xij = Zj
如果一个序列S即是A的子序列又是B的子序列,则称S是A、B的公共子序列。
求A、B所有公共子序列中最长的序列的长度。
输入:输入共两行,每行一个由字母和数字组成的字符串,代表序列A、B。A、B的长度不超过200个字符。
输出:一个整数,表示最长各个子序列的长度。格式:printf("%d\n");
输入样例
programming
contest
输出样例
2
#include<iostream>
#include<string.h>
#include<math.h>
using namespace std;
int main(){
int ans = 0;
char a[205], b[205];
int l[205][205] = {0};
gets(a);
gets(b);
for(int i = 1; i <= strlen(a); i++){
for(int j = 1; j <= strlen(b); j++){
if(a[i-1] == b[j-1]){
l[i][j] = l[i-1][j-1] + 1;
}
else{
l[i][j] = max(l[i][j-1], l[i-1][j]);
}
}
}
cout << l[strlen(a)][strlen(b)] << endl;
}