解法一:常规解法,建图+DFS,时间复杂度O(n)+O(n),空间复杂度因为需要存储图,所以是O(n)
这种方法是通解,对于所有图都适用。
/**
* Definition for singly-linked list.
* struct ListNode {
* int val;
* ListNode *next;
* ListNode(int x) : val(x), next(NULL) {}
* };
*/
class Solution {
public:
int numComponents(ListNode* head, vector<int>& G) {
unordered_set<int> f(G.begin(), G.end());
unordered_map<int, vector<int>> g;
//根据G中节点,从list中建立图g
int u = head->val;
while(head->next) {
head = head->next;
int v = head->val;
if(f.count(v) && f.count(u)) {
g[u].push_back(v);
g[v].push_back(u);
}
u = v;
}
//DFS
int ans = 0;
unordered_set<int> visited;
for(int u : G) {
if(visited.count(u)) continue;
++ans;
dfs(u, g, visited);
}
return ans;
}
private:
void dfs(int cur, unordered_map<int, vector<int>>& g, unordered_set<int>& visited) {
if(visited.count(cur)) return; //当前节点在visited集合中计数不为0(为1),说明已经遍历过该节点
visited.insert(cur);
for(int next : g[cur]) { //int next 与 const int next均可以通过,为什么要加const?
dfs(next, g, visited);
}
}
};
解法二:利用list的特性,将G中的点映射到list上的话,每一个组件内部都是线性连接的,外部应该是断开的,所以可以利用这种特性,遍历链表,当一个节点在G中,但它的下一个节点为null或者下一节点的值不在G中,则说明这是一个组建的末尾元素,ans++,再继续遍历
class Solution {
public:
int numComponents(ListNode* head, vector<int>& G) {
unordered_set<int> g(G.begin(), G.end());
int ans = 0;
while(head) {
if(g.count(head->val) && (!head->next || !g.count(head->next->val)))
++ans;
head = head->next;
}
return ans;
}
};