今晚上看决策树,关于剪枝与CART没有看懂。先写写已经懂了的知识点。
决策树是一种基本的分类与回归方法,这里暂时先讨论分类的问题。
由训练已知样本,得到一个可以对新样本进行分类的模型,这是机器学习中的一个老套路了,这个模型的得来可以千差万别,决策树就是其中非常直观的一种。
决策树非常符合我们对事物类别进行判断的思考模式,比如我们来判断一个学生是不是三好学生,首先,看他的品德好不好,如果品德不好的话,直接可以否认了;如果品德好的话,还暂时不能够确定他是不是一个三好学生,还需要去判断他的学习,如果学习好的话,还需要判断他的体育,这样的一个判断过程便构成了一个决策树,决策树模型就是如果通过已知数据生成决策树的过程。
咋看一下,会觉得决策树怎么会如此简单?是的,每一个数学模型的原理都是一个初中生能够理解的,但是真的去深挖的话,你会发现一切本没有那么简单。
因为并非每一个决策树问题都像评价三好学生那样简单。