一般增广路算法(EdmondsKarp)
算法流程:
每次用BFS找一条最短的增广路径,然后沿着这条路径修改流量值。当没有增广路时,算法停止,此时的流就是最大流。
增广路算法的效率:
EK算法的时间复杂度是O(VE^2),时间效率较慢,在稀疏图中效率还是比较高的。
算法实现:
邻接矩阵
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=20; //最大点数
const int inf=0x3f3f3f3f;
int pre[maxn]; //保存前驱节点
bool vis[maxn]; // 标记一个点是否被访问过
int mp[maxn][maxn]; //临接矩阵保存残留网络
int n,m;//输入n个顶点,m条边
bool bfs(int st,int ed)
{
int t,i;
queue<int>q;
memset(pre,0,sizeof(pre));
memset(vis,0,sizeof(vis));
vis[st]=1;
q.push(st);
while(!q.empty())
{
t=q.front();
q.pop();
if(t==ed)
return true;//找到一条增广路
for(i=1;i<=n;i++)
{