网络流模板

摘要由CSDN通过智能技术生成

一般增广路算法(EdmondsKarp)

算法流程:

每次用BFS找一条最短的增广路径,然后沿着这条路径修改流量值。当没有增广路时,算法停止,此时的流就是最大流。

增广路算法的效率:

EK算法的时间复杂度是O(VE^2),时间效率较慢,在稀疏图中效率还是比较高的。

算法实现:

邻接矩阵

#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
using namespace std;

const int maxn=20; //最大点数
const int inf=0x3f3f3f3f;

int pre[maxn];   //保存前驱节点
bool vis[maxn];  // 标记一个点是否被访问过
int mp[maxn][maxn]; //临接矩阵保存残留网络

int n,m;//输入n个顶点,m条边

bool bfs(int st,int ed)
{
    int t,i;
    queue<int>q;
    memset(pre,0,sizeof(pre));
    memset(vis,0,sizeof(vis));
    vis[st]=1;
    q.push(st);
    while(!q.empty())
    {
        t=q.front();
        q.pop();
        if(t==ed)
            return true;//找到一条增广路
        for(i=1;i<=n;i++)
        {
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值