特征选择

# encoding:utf-8
from sklearn.feature_selection import VarianceThreshold

# 6个样本,3维的特征向量
X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]]

# 根据方差保留80%的向量
# 计算公式:var_thresh = p(1-p)
sel = VarianceThreshold(threshold=(.8 * (1 - .8)))
X=sel.fit_transform(X)
print X
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
iris = load_iris()
X, y = iris.data, iris.target
print('原始特征:')
print(X.shape)
print(X[:5, :])

print()

# 使用卡方分布选择2个维度的变量
X_new = SelectKBest(chi2, k=2).fit_transform(X, y)
print('选取的特征:')
print(X_new.shape)
print(X_new[:5, :])

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import load_iris
from sklearn.feature_selection import SelectFromModel

iris = load_iris()
X, y = iris.data, iris.target
print('原始特征:')
print(X.shape)
print(X[:5, :])

clf = RandomForestClassifier()
clf = clf.fit(X, y)
print('特征得分:')
print(clf.feature_importances_  )

# 基于随机森林选择特征
model = SelectFromModel(clf, prefit=True)
X_new = model.transform(X)
print('选取的特征:')
print(X_new.shape)
print(X_new[:5, :])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值