题目描述
有一个最多能装m千克的背包,有n块魔法石,它们的重量分别是W1,W2,…,Wn,它们的价值分别是C1,C2,…,Cn。若每种魔法石只有一件,问能装入的最大总价值。
输入格式
第一行为两个整数m和n,以下n行中,每行两个整数Wi,Ci,分别代表第i件物品的重量和价值。
输出格式
输出一个整数,即最大价值。
样例
样例输入
8 3
2 3
5 4
5 5
样例输出
8
题目类型
学过背包问题的都知道
01背包模板题
本蒟蒻对背包问题的看法
本蒟蒻觉得这和生活中的一样:
假设你有一个背包,它有一个最大的容量。而你眼前有一些物品,每件物品都有一个价值和体积。你要从中取些物品放入背包,是背包里的物品价值总和最大。当然,这儿有两个前提:
(1):每装一件物品,背包的容量就要减少一些(此物品的体积)
(2):而当你的背包装不下了以后,就不能装了
而01背包,就是每件物品只有一件。要么装,要么不装。(这里装选择装就是"1",反之是"0")
解题过程
有了上面这些理解,做这题就比较轻松了。
备注:虽然本题的不是容量和体积,但我们可以把背包总重量看成背包容量;把物品重量看成物品体积。所以本蒟蒻后面都说的是"背包容量"和"物品体积"。
定义状态
设f[i]为截至第i件物品时,背包里目前物品的价值综合最大为多少。
初始化(边界值)
同样全设成0。
状态转移方程
两种情况:
(1)不选第i件物品:则f[i]的值就为f[i-1]的值
(2)选第i件物品:那背包容量减去物品的体积w[i],但要加上它的价值c[i]
code
f[i]=max(f[i-1],f[i-w[i]]+c[i]);
循环次数
i从1循环到n,枚举背包容量;
j从m循环到w[i],枚举物品数量;
完整代码
#include<bits/stdc++.h>
using namespace std;
int f[1005],w[105],c[105];
int main()
{
int n,m;
scanf("%d%d",&m,&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d",&w[i],&c[i]);
}
for(int i=1;i<=n;i++)
{
for(int j=m;j>=w[i];j--)
{
if(f[j]<f[j-w[i]]+c[i])
{
f[j]=f[j-w[i]]+c[i];
}
}
}
printf("%d\n",f[m]);
return 0;
}
本题难点&总结
主要是要对背包问题有一定的了解,按照这个思路就可以推出方程,AC做出本题了。