动态规划(背包问题)--01背包

题目描述

有一个最多能装m千克的背包,有n块魔法石,它们的重量分别是W1,W2,…,Wn,它们的价值分别是C1,C2,…,Cn。若每种魔法石只有一件,问能装入的最大总价值。

输入格式

第一行为两个整数m和n,以下n行中,每行两个整数Wi,Ci,分别代表第i件物品的重量和价值。

输出格式

输出一个整数,即最大价值。

样例

样例输入
8 3
2 3
5 4
5 5
样例输出
8

题目类型

学过背包问题的都知道
01背包模板题

本蒟蒻对背包问题的看法

本蒟蒻觉得这和生活中的一样:
假设你有一个背包,它有一个最大的容量。而你眼前有一些物品,每件物品都有一个价值和体积。你要从中取些物品放入背包,是背包里的物品价值总和最大。当然,这儿有两个前提:
(1):每装一件物品,背包的容量就要减少一些(此物品的体积)
(2):而当你的背包装不下了以后,就不能装了
01背包,就是每件物品只有一件。要么装,要么不装。(这里装选择装就是"1",反之是"0")

解题过程

有了上面这些理解,做这题就比较轻松了。
备注:虽然本题的不是容量和体积,但我们可以把背包总重量看成背包容量;把物品重量看成物品体积。所以本蒟蒻后面都说的是"背包容量"和"物品体积"。

定义状态

设f[i]为截至第i件物品时,背包里目前物品的价值综合最大为多少。

初始化(边界值)

同样全设成0。

状态转移方程

两种情况:
(1)不选第i件物品:则f[i]的值就为f[i-1]的值
(2)选第i件物品:那背包容量减去物品的体积w[i],但要加上它的价值c[i]

code
f[i]=max(f[i-1],f[i-w[i]]+c[i]);
循环次数

i从1循环到n,枚举背包容量;
j从m循环到w[i],枚举物品数量;

完整代码
#include<bits/stdc++.h>
using namespace std;
int f[1005],w[105],c[105];
int main()
{
	int n,m;
	scanf("%d%d",&m,&n);
	for(int i=1;i<=n;i++)
	{
		scanf("%d%d",&w[i],&c[i]);
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=m;j>=w[i];j--)
		{
			if(f[j]<f[j-w[i]]+c[i])
			{
				f[j]=f[j-w[i]]+c[i];
			}
		}
	}
	printf("%d\n",f[m]);
	return 0;
}
本题难点&总结

主要是要对背包问题有一定的了解,按照这个思路就可以推出方程,AC做出本题了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值