算法学习笔记之约瑟夫环问题

问题:
假设下标从0开始,0,1,2 .. m-1共m个人,从1开始报数,报到k则此人从环出退出,问最后剩下的一个人的编号是多少?

我的理解:
设f(m,k,i)为m个人的环,报数为k,第i个人出环的编号,m个人的环第i个出来的人就相当于m-1个人的环第i-1个出来的人,不过这个序号是相当于原来m个人的序号。但注意的是m个人的环第一个出来的人序号要减一。

通俗的讲就是:假设10个人的环,报数为3的人出来,那么10个人的环第一个出来的人的序号为2,而10个人的环第二次出来的人相当于9个人第一次出来的人。

程序:

//m:人数
//k:报数
//i:第i个出来的
public static int fun(int m,int k,int i) {
        if (i == 1) {
            return (m+k-1)%m;
        }else {
            //取余是因为是环
            return (fun(m-1, k, i-1)+k)%m;
        }
    }

结果:
这里写图片描述

转载于:https://my.oschina.net/u/2770255/blog/679438

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值