关于约瑟夫环这个问题,我前一篇文章给出的算法,时间复杂度已经达到O[n],已经是一个相当不错的算法了。
然而我在网上看到Tank_long网友的博文,他在O[n]的基础上把时间复杂度又进一步下降了,而且在某些条件下极大的降低了复杂度。
虽然不知道是不是这位网友原创的算法,但是这么优秀的算法,我们又岂能错过呢?那么下面就听我缓缓道来~
我就在上一篇文章的基础之上继续往下扩展(忘记了的朋友可以回头看一下哈,链接)
这个优化算法的出发点呢,是基于当 k 小于 n 的时候,就会有这样一个情况:
0,1,...,k-1,k,...,2k-1,2k,...,3k-1,3k,...,n-1
在这个数列一遍遍历完后,我们发现已经从中剔除了 n/k 个数据,假如我们能够找到 F[n] 与 F[n-n/k] 之间的关系,那就能够大大减少计算量了。结论当然是肯定的喽,那我们就来找找他们之间的关系。
我们先假设 m=n/k ,把 m 个数选中的数(k-1,2k-1,...,mk-1)从数列中剔除,以mk为起始点重新排成长度为 n-m 的数列,如下