约瑟夫环问题的算法优化——学习笔记

本文介绍了约瑟夫环问题的一种算法优化方法,通过找到F[n]与F[n-n/k]之间的关系,减少计算量。当k<n时,利用公式优化计算过程,而在k>=n时,仍采用原有算法。文章提供了优化后的代码实现,并提到了另一种类似优化思路,但未解决k>n的情况。鼓励读者分享更好的解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于约瑟夫环这个问题,我前一篇文章给出的算法,时间复杂度已经达到O[n],已经是一个相当不错的算法了。

然而我在网上看到Tank_long网友的博文,他在O[n]的基础上把时间复杂度又进一步下降了,而且在某些条件下极大的降低了复杂度。

虽然不知道是不是这位网友原创的算法,但是这么优秀的算法,我们又岂能错过呢?那么下面就听我缓缓道来~

 

我就在上一篇文章的基础之上继续往下扩展(忘记了的朋友可以回头看一下哈,链接

这个优化算法的出发点呢,是基于当 k 小于 n 的时候,就会有这样一个情况:

0,1,...,k-1,k,...,2k-1,2k,...,3k-1,3k,...,n-1

在这个数列一遍遍历完后,我们发现已经从中剔除了 n/k 个数据,假如我们能够找到 F[n] 与 F[n-n/k] 之间的关系,那就能够大大减少计算量了。结论当然是肯定的喽,那我们就来找找他们之间的关系。

我们先假设 m=n/k ,把 m 个数选中的数(k-1,2k-1,...,mk-1)从数列中剔除,以mk为起始点重新排成长度为 n-m 的数列,如下

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值