Given an unsorted integer array, find the first missing positive integer.
For example,
Given [1, 2, 0] return 3,
and [3, 4, -1, 1 ] return 2.
Your algorithm should run in O(n) time and uses constant space.
解题思路:
- 对于未排序的数组,我们首先想到的对它排序
- 考虑到时间复杂度,所以我们做类似于计数排序
- 将数组中的元素存放到其对应的位置,如元素 5,将它替换到下标为 4 的位置
- 如果元素大于数组的长度,即超出范围,我们不做任何处理,同时对于小于 0 的元素,我们也不做任何处理
- 最后再遍历数组,如果当前元素与它的下标不对应,那么返回它的 下标 + 1 即可
- 如果出现数组中的元素都与它的下标一一对应的情况,那么就返回 数组的长度 + 1
代码如下:
public int firstMissingPositive(int[] A) {
if(A.length == 0 || A == null) return 1;
// 将元素替换到相对应的位置,即 A[i] - 1
for(int i = 0; i < A.length; i++){
if(A[i] > 0 && A[i] <= A.length && A[i] != A[A[i] - 1]){
swap(A,i, A[i] - 1);
// 若发生了替换,则需要重置游标,使游标退回到原来的位置
// 为什么?因为发生了替换后,该游标上的元素发生了改变,需要考虑当前元素是否合适
// 如 -1,4,2,1,9,当 4 与 1 发生替换后,元素 1 处在下标为 1 的位置上,需要把它替换
// 如果不进行 i-- 的操作,那么 1 就不会出现在合适的位置上
i--;
}
}
for(int i = 0; i < A.length; i++){
if(A[i] != i + 1)
return i + 1;
}
return A.length + 1;
}
public void swap(int [] A, int a, int b){
int temp = A[a];
A[a] = A[b];
A[b] = temp;
}