设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R不具备 ()?
解析:
假设集合A,以及基于A上的关系R
自反: 如果a是A的元素,那么<a,a>是R的元素
反自反: 如果a是A的元素,那么<a,a>不是R的元素
对称:如果<a,b>是R的元素,那么<b,a>是R的元素
反对称:如果<a,b>,<b,a>是R的元素,那么a,b相等
传递:如果<a,b>,<b,c>是R的元素,那么<a,c>是R的元素
反对称性:如果<a,b>,<b,a>是R的元素,那么a,b相等; 但是此题(2,3),(3,2)都是R的元素,然而2,3并不相等
传递性:如果<a,b>,<b,c>是R的元素,那么<a,c>是R的元素;随便从R中找两个满足<a,b>,<b,c>的,只需看<a,c>在不在R中,切记要从R中找,比如(2,3),(3,2),你只需要看(2,2)在不在R中,本题显然在,别的例子同理也可以