设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R不具备 ()?----阿里巴巴2015实习生笔试题

本文分析了阿里巴巴2015年实习生笔试中的一道题目,涉及集合A={1,2,3}上的关系R。通过解析,指出R不具备反对称性和传递性,解释了错误答案C的原因。" 130250750,17804463,QT初学者教程:简易计算器实现,"['Qt开发', 'GUI编程', 'C++', '软件开发', '编程实践']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >



设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R不具备 ()?

正确答案: D   你的答案: C (错误)

自反性
传递性
对称性
反对称性


解析:


假设集合A,以及基于A上的关系R
自反: 如果a是A的元素,那么<a,a>是R的元素  
反自反: 如果a是A的元素,那么<a,a>不是R的元素  
对称:如果<a,b>是R的元素,那么<b,a>是R的元素  
反对称:如果<a,b>,<b,a>是R的元素,那么a,b相等  
传递:如果<a,b>,<b,c>是R的元素,那么<a,c>是R的元素


反对称性:如果<a,b>,<b,a>是R的元素,那么a,b相等; 但是此题(2,3),(3,2)都是R的元素,然而2,3并不相等

传递性:如果<a,b>,<b,c>是R的元素,那么<a,c>是R的元素;随便从R中找两个满足<a,b>,<b,c>的,只需看<a,c>在不在R中,切记要从R中找,比如(2,3),(3,2),你只需要看(2,2)在不在R中,本题显然在,别的例子同理也可以

设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,2),(3,3)},则R不具备 ()?

正确答案: D   你的答案: C (错误)

自反性
传递性
对称性
反对称性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值