上一篇博客实现了Eureka服务注册与发现后,我们再使用Ribbon实现负载均衡。
负载均衡的实现效果至少需要两个provider服务,之前我们只有一个provider服务,所以我们先添加一个。
8002服务所需的依赖、类、配置与8001服务完全相同。只需要把端口改成8002,改一下主启动类的名字。剩下的完全复制粘贴就可以了。
然后为了展示效果,我们修改一些controller返回的结果。
8001:
8002:
Spring Cloud Ribbon是一个基于HTTP和TCP的客户端负载均衡工具,所以它是使用是在客户端。这里对我们的consumer进行ribbon的整合。
所需依赖
<!-- ribbon -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-ribbon</artifactId>
<version>1.4.6.RELEASE</version>
</dependency>
<!-- eureka -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
<version>1.4.6.RELEASE</version>
</dependency>
Ribbon的代码实现是十分简单的。只需要在你使用的RestTemplate对象上加上@LoadBalanced注解即可。
这里我们在RestConfig配置类中添加此注解。
因为之前我们的Controller中发现地址是写死的,现在我们需要修改一下。
这里的地址就是我们需要获取的服务的id,也就是我们服务中心中的Application。
一切准备就绪,运行两个Eureka注册中心,两个provider服务,和consumer服务,进行测试。
第一次查询:
第二次查询:
这里我们可以看出,两次查询的结果是从两个provider获得的,成功实现负载均衡。
Ribbon的默认负载均衡策略是轮询算法。那么如何手动配置Ribbon使用其他算法呢?
首先我们看一下Ribbon都自带有哪些负载均衡策略。
类图:
IRule
这是所有负载均衡策略的父接口,里边的核心方法就是choose方法,用来选择一个服务实例。
AbstractLoadBalancerRule
AbstractLoadBalancerRule是一个抽象类,里边主要定义了一个ILoadBalancer,就是我们上文所说的负载均衡器,这里定义它的目的主要是辅助负责均衡策略选取合适的服务端实例。
RandomRule
看名字就知道,这种负载均衡策略就是随机选择一个服务实例,看源码我们知道,在RandomRule的无参构造方法中初始化了一个Random对象,然后在它重写的choose方法又调用了choose(ILoadBalancer lb, Object key)这个重载的choose方法,在这个重载的choose方法中,每次利用random对象生成一个不大于服务实例总数的随机数,并将该数作为下标所以获取一个服务实例。
RoundRobinRule
RoundRobinRule这种负载均衡策略叫做轮询负载均衡策略,也就是我们在上文所说的BaseLoadBalancer负载均衡器中默认采用的负载均衡策略。这个类的choose(ILoadBalancer lb, Object key)函数整体逻辑是这样的:开启一个计数器count,在while循环中遍历服务清单,获取清单之前先通过incrementAndGetModulo方法获取一个下标,这个下标是一个不断自增长的数先加1然后和服务清单总数取模之后获取到的(所以这个下标从来不会越界),拿着下标再去服务清单列表中取服务,每次循环计数器都会加1,如果连续10次都没有取到服务,则会报一个警告No available alive servers after 10 tries from load balancer: XXXX。
AvailabilityFilteringRule
该策略继承自抽象策略PredicateBasedRule,所以也继承了"先过滤清单,再轮询选择"的基本处理逻辑,先过滤掉跳闸的服务,再从健康的服务中执行轮询调用。通过线性抽样的方式直接尝试可用且较空闲的实例来使用,优化了父类每次都要遍历所有实例的开销。
RetryRule
看名字就知道这种负载均衡策略带有重试功能。首先RetryRule中又定义了一个subRule,它的实现类是RoundRobinRule,然后在RetryRule的choose(ILoadBalancer lb, Object key)方法中,每次还是采用RoundRobinRule中的choose规则来选择一个服务实例,如果选到的实例正常就返回,如果选择的服务实例为null或者已经失效,则在失效时间deadline之前不断的进行重试(重试时获取服务的策略还是RoundRobinRule中定义的策略),如果超过了deadline还是没取到则会返回一个null。
WeightedResponseTimeRule
WeightedResponseTimeRule是RoundRobinRule的一个子类,在WeightedResponseTimeRule中对RoundRobinRule的功能进行了扩展,WeightedResponseTimeRule中会根据每一个实例的运行情况来给计算出该实例的一个权重,然后在挑选实例的时候则根据权重进行挑选,这样能够实现更优的实例调用。WeightedResponseTimeRule中有一个名叫DynamicServerWeightTask的定时任务,默认情况下每隔30秒会计算一次各个服务实例的权重,权重的计算规则也很简单,如果一个服务的平均响应时间越短则权重越大,那么该服务实例被选中执行任务的概率也就越大。
ClientConfigEnabledRoundRobinRule
ClientConfigEnabledRoundRobinRule选择策略的实现很简单,内部定义了RoundRobinRule,choose方法还是采用了RoundRobinRule的choose方法,所以它的选择策略和RoundRobinRule的选择策略一致。
BestAvailableRule
BestAvailableRule继承自ClientConfigEnabledRoundRobinRule,它在ClientConfigEnabledRoundRobinRule的基础上主要增加了根据loadBalancerStats中保存的服务实例的状态信息来过滤掉失效的服务实例的功能,然后顺便找出并发请求最小的服务实例来使用。然而loadBalancerStats有可能为null,如果loadBalancerStats为null,则BestAvailableRule将采用它的父类即ClientConfigEnabledRoundRobinRule的服务选取策略(线性轮询)。
PredicateBasedRule
PredicateBasedRule是ClientConfigEnabledRoundRobinRule的一个子类,它先通过内部定义的一个过滤器过滤出一部分服务实例清单,然后再采用线性轮询的方式从过滤出来的结果中选取一个服务实例。
ZoneAvoidanceRule(Finchley.SR1版本中默认均衡策略)
ZoneAvoidanceRule是PredicateBasedRule的一个实现类,只不过这里多一个过滤条件,ZoneAvoidanceRule中的过滤条件是以ZoneAvoidancePredicate为主过滤条件和以AvailabilityPredicate为次过滤条件组成的一个叫做CompositePredicate的组合过滤条件,过滤成功之后,继续采用线性轮询的方式从过滤结果中选择一个出来。
自定义选择负载均衡策略
这里只需要添加一个要选择的IRule的实现类的对象,并注册到Bean中即可,我以随机算法为例。
@Configuration
public class RuleConfig {
@Bean
public IRule getIRule(){
//选择RandomRule策略
return new RandomRule();
}
}
这样Ribbon的负载均衡使用的就是随机策略了。