Python分布式进程中你会遇到的问题解析

本文探讨了Python分布式进程中可能遇到的问题,特别是关于匿名函数的序列化错误。通过multiprocessing模块的managers子模块,展示了如何实现分布式进程,包括服务进程和任务进程的编写。文章通过示例代码解释了Queue在分布式环境中的使用,并提供了错误分析及修复方案。最后,文章强调了分布式计算的实际应用价值和Queue对象在网络中的传递方式,以及authkey在保证进程间安全通信的作用。
摘要由CSDN通过智能技术生成

@本文来源于公众号:csdn2299,喜欢可以关注公众号 程序员学府
这篇文章主要介绍了Python分布式进程中你会遇到的问题,本文通过实例代码给大家介绍的非常详细,具有一定的参考借鉴价值,需要的朋友可以参考下
小惊大怪

你是不是在用Python3或者在windows系统上编程?最重要的是你对进程和线程不是很清楚?那么恭喜你,在python分布式进程中,会有坑等着你去挖。。。(hahahaha,此处允许我吓唬一下你)开玩笑的啦,不过,如果你知道序列中不支持匿名函数,那这个坑就和你say byebye了。好了话不多数,直接进入正题。

分布式进程

正如大家所知道的Process比Thread更稳定,而且Process可以分布到多台机器上,而Thread最多只能分布到同一台机器的多个CPU上。Python的multiprocessing模块不但支持多进程,其中managers子模块还支持把多进程分布到多台机器上。一个服务进程可以作为调度者,将任务分布到其他多个进程中,依靠网络通信。由于managers模块封装很好,不必了解网络通信的细节,就可以很容易地编写分布式多进程程序。

代码记录

举个例子

如果我们已经有一个通过Queue通信的多进程程序在同一台机器上运行,现在,由于处理任务的进程任务繁重,希望把发送任务的进程和处理任务的进程分布到两台机器上,这应该怎么用分布式进程来实现呢?你已经知道了原有的Queue可以继续使用,而且通过managers模块把Queue通过网络暴露出去,就可以让其他机器的进程来访问Queue了。好,那我们就这么干!

写个task_master.py

我们先看服务进程。服务进程负责启动Queue,把Queue注册到网络上,然后往Queue里面写入任务。

#!/user/bin/pytthon 
# -*- coding:utf-8 -*- 
# @Time: 2018/3/3 16:46 
# @Author: lichexo 
# @File: task_master.py 
import random, time, queue 
from multiprocessing.managers import BaseManager 
# 发送任务的队列: 
task_queue = queue.Queue() 
# 接收结果的队列: 
result_queue = queue.Queue() 
# 从BaseManager继承的QueueManager: 
class QueueManager(BaseManager): 
 pass
# 把两个Queue都注册到网络上, callable参数关联了Queue对象: 
QueueManager.register('get_task_queue', callable=lambda: task_queue) 
QueueManager.register('get_result_queue', callable=lambda: result_queue) 
# 绑定端口5000, 设置验证码'abc': 
manager = QueueManager(address=('', 5000), authkey=b'abc') 
# 启动Queue: 
manager.start() 
# 获得通过网络访问的Queue对象: 
task = manager.get_task_queue() 
result = manager.get_result_queue() 
# 放几个任务进去: 
for i in range(10): 
 n = random.randint(0, 10000) 
 print('Put task %d...' % n) 
 task.put(n) 
# 从result队列读取结果: 
print('Try get results...') 
for i in range(10): 
 r = result.get(timeout=10) 
 print('Result: %s' % r) 
# 关闭: 
manager.shutdown() 
print('master exit.')

请注意,当我们在一台机器上写多进程程序时,创建的Queue可以直接拿来用,但是,在分布式多进程环境下,添加任务到Queue不可以直接对原始的task_queue进行操作,那样就绕过了QueueManager的封装,必须通过manager.get_task_queue()获得的Queue接口添加。然后,在另一台机器上启动任务进程(本机上启动也可以)

写个task_worker.py

#!/user/bin/pytthon 
# -*- coding:utf-8 -*- 
# @Time: 2018/3/3 16:46 
# @A
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值