
论文学习
文章平均质量分 72
kiki喜欢吃蛋糕
没有更新就是去吃蛋糕啦@^ - ^@
展开
-
3.FSDR学习-文章解读
一.引言梳理 语义分割:从像素级别来理解图像的。将标签或类别与图片的每个像素关联的一种深度学习算法。它用来识别构成可区分类别的像素集合。例如,自动驾驶汽车需要识别车辆、行人、交通信号、人行道和其他道路特征。 有些类似ps抠图 ...原创 2022-04-30 11:30:27 · 342 阅读 · 0 评论 -
2.FSDR学习-摘要梳理后篇
一.研究方向 图片风格迁移:风格迁移(style transfer),指的是保留图片内容(content),将图片转换为目标风格(style)。 目前的风格迁移几乎大部分都是在GAN(生成对抗网络)的基础上组合AdaIn(适应性实体正则化),加上vgg网络构成的感知损失(content loss)等来进行优化;还有较为经典的pixel2pixel、cycle gan等利用成对数据或者cycle loss进行图像翻译(Image Translation)任务等。 风格迁移后,普通的城市照片可以拥有各种各样的原创 2022-03-06 19:44:03 · 2646 阅读 · 0 评论 -
1.FSDR学习-摘要解读
一.标题解读 FSDR: Frequency Space Domain Randomization for Domain Generalization 用于域泛化的频域域随机化 此论文发表在CVPR2021,它的归类为域泛化。 域泛化问题感觉是一个工业上很常见的问题。数据可能来自多个不同的数据源。或者说你的训练集是高清图像进行训练,实际的测试集却是较为模糊的图片。很多情况会导致训练域与实际的测试域不匹配的问题。 Frequency Space:频率空间 Domain:领域 Randomization:原创 2022-03-04 20:58:31 · 3463 阅读 · 0 评论