Given an array of non-negative integers, you are initially positioned at the first index of the array.
Each element in the array represents your maximum jump length at that position.
Your goal is to reach the last index in the minimum number of jumps.
For example:
Given array A = [2,3,1,1,4]
The minimum number of jumps to reach the last index is 2
. (Jump 1
step from index 0 to 1, then 3
steps to the last index.)
解题思路一(时间复杂度O(nlog n))
这种解体思路是很简单的,属于比较直接的方法,但是经过测试实际上是会超时的,也是属于动态规划的方法,但是相对会有很多冗余的步骤。
首先设定一个数组arr用来记录i位置的最短步数,而动态规划中的状态传递方程就是当arr[j]的值大于arr[i]+1时,由于从i位置到j的距离小于当前j位置的最短距离,所以更新这个最短的距离为arr[j]=arr[i]+1;当对nums数组进行一次遍历后,也就是将所有的状态全部都计算一次之后,最终的arr[n-1]就是答案
代码如下:
class Solution {
public:
int jump(vector<int>& nums) {
int n=nums.size();
vector<int> arr(n, INT_MAX);
arr[0]=0;
int p=0;
for(int i=0;i<n;i++)
{
if(n-1>=nums[i]+i) p=nums[i]+i;
else p=n-1;
for(int j=i+1;j<=p;j++)
{
if(arr[j]>arr[i]+1) arr[j]=arr[i]+1;
}
}
return arr[n-1];
}
};
解题思路二(时间复杂度O(n))
第二种解决方案依旧使用了动态规划的方法,与之前的jump game I属于同一种思路,只需要额外再增加一个空间就可以解决,而且时间复杂度更低:
使用一个can用来记录当前情况下所能达到的最远的距离,而lastcan用来记录当前步骤下所能到达的最远的距离所能到达的最远的距离,当出现i>lastcan的时候,也就是当前的位置超出了当前步骤下的最远的位置,所以需要更新lastcan,这样,最终当lastcan大于n-1的时候,就已经到达了目标位置,返回相应的res.