【leetcode】45. Jump Game II

本文介绍了一种寻找非负整数数组中从起始位置到达末尾所需的最少跳跃次数的算法。提供两种解决方案,第一种时间复杂度为O(nlogn),通过动态规划实现;第二种时间复杂度为O(n),采用更高效的动态规划方法。
摘要由CSDN通过智能技术生成
Given an array of non-negative integers, you are initially positioned at the first index of the array.

Each element in the array represents your maximum jump length at that position.

Your goal is to reach the last index in the minimum number of jumps.

For example:
Given array A = [2,3,1,1,4]

The minimum number of jumps to reach the last index is 2. (Jump 1 step from index 0 to 1, then 3 steps to the last index.)



解题思路一(时间复杂度O(nlog n))


这种解体思路是很简单的,属于比较直接的方法,但是经过测试实际上是会超时的,也是属于动态规划的方法,但是相对会有很多冗余的步骤。

首先设定一个数组arr用来记录i位置的最短步数,而动态规划中的状态传递方程就是当arr[j]的值大于arr[i]+1时,由于从i位置到j的距离小于当前j位置的最短距离,所以更新这个最短的距离为arr[j]=arr[i]+1;当对nums数组进行一次遍历后,也就是将所有的状态全部都计算一次之后,最终的arr[n-1]就是答案

代码如下:

class Solution {
public:
    int jump(vector<int>& nums) {
        int n=nums.size();
        vector<int> arr(n, INT_MAX);
		arr[0]=0;
        int p=0;
        for(int i=0;i<n;i++)
        {
        	if(n-1>=nums[i]+i) p=nums[i]+i;
        	else p=n-1;
        	for(int j=i+1;j<=p;j++)
        	{
        		if(arr[j]>arr[i]+1) arr[j]=arr[i]+1;
			}
		}
		return arr[n-1];
    }
};


解题思路二(时间复杂度O(n))
第二种解决方案依旧使用了动态规划的方法,与之前的jump game I属于同一种思路,只需要额外再增加一个空间就可以解决,而且时间复杂度更低:
使用一个can用来记录当前情况下所能达到的最远的距离,而lastcan用来记录当前步骤下所能到达的最远的距离所能到达的最远的距离,当出现i>lastcan的时候,也就是当前的位置超出了当前步骤下的最远的位置,所以需要更新lastcan,这样,最终当lastcan大于n-1的时候,就已经到达了目标位置,返回相应的res.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值