【机器学习】西瓜书学习心得及课后习题参考答案—第4章决策树

笔记心得

这一章学起来较为简单,也比较好理解。
4.1基本流程——介绍了决策树的一个基本的流程。叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集,从根结点到每个叶结点的路径对应了一个判定测试序列。并且给出了决策树学习的基本算法。
在这里插入图片描述
上述算法递归返回的情形2和情形3不同之处:情形2是利用当前结点的后验分布,情形3则是把父结点的样本分布作为当前结点的先验分布。
4.2划分选择——对应决策树学习基本算法的第8步,选择最优划分属性,ID3决策树学习算法以信息增益为准则来选择划分属性,C4.5决策树算法使用增益率,CART决策树使用基尼指数来选择划分属性。
4.3剪枝处理——它是对付overfitting的主要手段,基本策略有预剪枝和后剪枝。
4.4连续与缺失值——连续属性离散化技术可以面对学习任务中遇到的连续属性,若当前结点划分属性为连续属性,该属性还可作为其后代结点的划分属性。面对缺失值需要解决两个问题:1是如何在属性值缺失的情况下进行划分属性选择?2是给定划分属性,若样本在该属性上的值缺失,如何对样本进行划分?
4.5多变量决策树——介绍了多变量决策树,一定程度上能简化决策树。

术语学习

决策树 decision tree
分而治之 divide-and-conquer
纯度 purity
信息熵 information entropy
信息增益 information gain
迭代二分器 Iterative Dichotomiser ID3算法中的ID
增益率 gain ratio
固有值 intrinsic value
CART Classification and Regression Tree
基尼指数 Gini index
剪枝 pruning
预剪枝 prepruning
后剪枝 postpruning
决策树桩 decision stump
二分法 bi-partition
轴平行 axis-parallel
多变量决策树 multivariate dicision tree
斜决策树 oblique decision tree
增量学习 incremental learning

课后习题

4.1 试证明对于不含冲突数据(即特征向量完全相同但标记不同)的训练集,必存在与训练集一致(即训练误差为 0) 的决策树。

回顾第1章和第2章定义

我们把"色泽" “根蒂” “敲声"作为三个坐标轴,则它们张成一个用于描述西瓜的三维空间,每个西瓜都可在这个空间中找到自己的坐标位置.由于空间中的每个点对应一个坐标向量,因此我们也把一个示例称为一个"特征向量” (feature vector).

这里关于示例结果的信息,例如"好瓜",称为"标记" (labe1); 拥有了标记信息的示例,则称为"样例" (examp1e).

更一般地,我们把学习器的实际预测输出与样本的真实输出之间的差异称为"误差" (error),学习器在训练集上的误差称为"训练误差" (training error)或"经验误差" (empirical error) ,在新样本上的误差称为"泛化误差" (generalization
error).

结合上述决策树学习的基本算法,可以知道如果以每个西瓜的编号作为划分属性,那么得到的决策树桩就是与训练集一致的。

4.2 试析使用"最小训练误差"作为决策树划分选择准则的缺陷。

在上面的介绍中,我们有意忽略了表 4.1 中的"编号"这一列.若把"编号"也作为一个候选划分属性,则根据式4.2均可计算出它的信息增益为 0.998 ,远大于其他候选划分属性.这很容易理解:"编号"将产生 17 个分支,每个分支结点仅包含一个样本,这些分支结点的纯度己达最大.然而,这样的决策树显然不具有泛化能力,无法对新样本进行有效预测.

4.3 试编程实现基于信息熵进行划分选择的决策树算法,并为表 4.3 中数据生成一棵决策树。

待补充

4.4 试编程实现基于基尼指数进行划分选择的决策树算法,为表 4.2 中数据生成预剪枝、后剪枝决策树并与未剪枝决策树进行比较.

待补充

4.5 试编程实现基于对率回归进行划分选择的决策树算法,并为表 4.3 中数据生成一棵决策树.

待补充

4.6 试选择 4 个 UCI 数据集,对上述 3 种算法所产生的未剪枝、预剪枝、后剪枝决策树进行实验比较,并进行适当的统计显著性检验.

待补充

4.7 图 4.2 是一个递归算法,若面临巨量数据,则决策树的层数会很深,使用递归方法易导致"栈"溢出。试使用"队列"数据结构,以参数MaxDepth 控制树的最大深度,写出与图 4.2 等价、但不使用递归的决策树生成算法.

待补充

4.8 试将决策树生成的深度优先搜索过程修改为广度优先搜索,以参数MaxNode控制树的最大结点数,将题 4.7 中基于队列的决策树算法进行改写。对比题 4.7 中的算法,试析哪种方式更易于控制决策树所需存储不超出内存。

待补充

4.9 试将 4.4.2 节对缺失值的处理机制推广到基尼指数的计算中去.

使用式4.9,4.10,4.11,对照式4.5,4.6

G i n i ( D ) = 1 − ∑ k = 1 ∣ y ∣ p ~ k 2 G i n i _ i n d e x ( D , a ) = ρ × G i n i _ i n d e x ( D ~ , a ) = ∑ v = 1 V r ~ v G i n i ( D v ) Gini(D) = 1- \sum_{k=1}^{|y|}\tilde{p}_{k}^2 \\ Gini\_index(D,a) = \rho \times Gini\_index(\tilde{D},a) \\ =\sum_{v=1}^V\tilde{r}_{v}Gini(D^v) Gini(D)=1k=1yp~k2Gini_index(D,a)=ρ×Gini_index(D~,a)=v=1Vr~vGini(Dv)

4.10 从网上下载或自己编程实现任意一种多变量决策树算法,并观察其在西瓜数据集 3.0 上产生的结果

待补充

  • 4
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课后习题答案(较完整)机器学习部分课
### 回答1: 《机器学习西瓜书机器学习领域的一本经典教材,其中的决策树算法是机器学习中的一种重要分类算法。决策树算法可以用于决策问题,将问题分解成多个子问题,通过构造决策树来递归地进行分类。 决策树算法的构建过程可以分为两个步骤,即特征选择和决策树生成。在特征选择过程中,需要根据某个评估指标对不同特征进行排序,选择最优的特征作为节点进行分割。常用的评估指标包括信息增益、信息增益比和基尼系数等。在决策树生成过程中,需要递归地生成决策树的各个节点,通过特征选择将训练样本不断划分成子集,并为每个子集生成一个新的节点,直到满足停止条件。 决策树算法具有易理解、易实现的特点,同时对部分异常数据具有一定的鲁棒性。但是,在处理高维数据或特征较多的数据集时,决策树算法可能会存在过拟合等问题。为了解决这些问题,可以使用剪枝算法、随机森林等方法进行优化和改进。 在实际应用中,决策树算法被广泛应用于数据挖掘、信用评估、医学诊断、文本分类等领域。在学习和应用决策树算法时,需要注意特征选择和决策树生成的各种细节和算法选择,以及如何利用决策树算法解决实际问题。 ### 回答2: 《机器学习》这本西瓜书机器学习领域的经典教材之一,其中涉及了决策树算法。决策树是一种基于树形结构的分类方法,可以用于处理离散型和连续型数据集。使用决策树算法建立模型的过程,可以理解为递归地将数据切割成小的子集,使得每个子集的纯度尽可能地提高,最终生成一棵有序的树型结构。 决策树算法的训练过程,通常分为三个步骤:选择最优特征、建立决策树以及剪枝。其中选择最优特征的目的是在当前样本集合中,找到对样本分类最有帮助的特征,通过衡量每个特征的信息增益或信息增益比,选出最优特征作为节点。根据节点特征将数据集分成若干互斥的子集,然后递归地对子集进行划分,生成决策树。最后,通过剪枝减少决策树的复杂度和泛化误差,得到最终的模型。 决策树算法在实际应用中具有很高的灵活性和可解释性,相对简单的分类问题中具有很好的性能。但是,当数据集过大或过于复杂时,决策树算法的计算复杂度会显著增加,生成的决策树容易过拟合,泛化能力较差。因此,在进行模型训练时需要进行特征选择、代码优化以及剪枝等操作。 ### 回答3: 决策树机器学习中一种常用的算法,它采用树状结构来进行分类和预测。在《机器学习西瓜书中,决策树被归为监督学习中的分类算法。 决策树算法的主要思想是将数据按照特征属性分为不同的类别。决策树有三个关键的概念:节点、分支、叶子节点。节点包括根节点、内部节点和叶子节点。根节点代表数据集,内部节点表示特征属性,叶子节点代表不同的数据类别。 在决策树算法中,有两种常用的构建方式:ID3算法和C4.5算法。这里我们简要介绍一下C4.5算法。C4.5算法是决策树算法中的一种改进算法,它不仅考虑了信息熵,还考虑了各个特征属性之间的相关性,从而提高了决策树算法的准确率。 C4.5算法主要分为三个步骤:特征选择、决策树的生成和决策树的剪枝。在特征选择阶段,C4.5算法采用信息增益比来选择最优划分属性。在决策树的生成阶段,C4.5算法采用递归方法,依次生成决策树的各个节点。在决策树的剪枝阶段,C4.5算法通过比较剪枝前后的错误率来确定是否进行剪枝。 总的来说,决策树算法是一种简单且常用的分类算法,它不仅易于理解和解释,还具有较高的分类准确率。当然,在实际应用中,我们需要根据实际情况选择合适的决策树算法,并对模型进行调参和优化,提高算法的性能和实用性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一个甜甜的大橙子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值