三种低通滤波器

本文介绍了Matlab图像处理中的图像增强技术,特别是空间域和频域处理。在频域处理部分,详细讲解了高斯低通滤波器和巴特沃思低通滤波器的使用,强调了这些滤波器在实际图像处理中的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Matlab图像处理

图像增强技术

图像增强技术运用范围广泛,大到航空航天、生命技术,小到摄像摄影、图片处理,均有用武之地。图像增强的方法是通过一定手段对原图像附加一些信息或变换数据,有选择地突出图像中感兴趣的特征或者抑制(掩盖)图像中某些不需要的特征,使图像与视觉响应特性相匹配。在当前,图像处理主要在空间域和频率域进行。

空间域处理

空间域图像增强技术主要包括直方图修正、灰度变换增强、图像平滑化以及图像锐化等。在增强过程中可以采用单一方法处理, 但更多实际情况是需要采用几种方法联合处理, 才能达到预期的增强效果(某个单一的图像处理方法可以解决全部问题〉。

频域处理

将图像在空间域转化到频域处理最后再行转化到空间域显示增添一定的复杂度,但却是必要的。
一个图象经过傅立叶变换后,就从空域变到了频域,因此我们可以用信号处理中对于频域信号的处理方法对一幅图象进行处理。比如对图象进行低通滤波等。

虽然在计算机中必定能够模拟一个锐截止频率的理想低通滤波器,但它们不能用电子元件来实现。实际中比较常用的低通滤波器有:巴特沃思(Butterworth)低通滤波器、理想滤波器、高斯低通滤波器等
总的讲,在频域更便于我们对图像进行处理。

频域滤波实现
滤波处理,又分为低通滤波和高通滤波。前者是进行图像的平滑处理,对于图像中出现的高通分量,通过设置截止函数的方式,将其过滤掉,可以有效的处理图片中出现的噪声,充分达到*模糊处理&#
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值