题目大意:给出两串长度为n(n<=1000)的只含数字的串,每次操作可以将连续的1到3个数字模10加1或模10减1(即9+1=0,0-1=9)
求源串最少多少步能变成目标串。
一看就知道是dp的题目,这题状态不难想d(i,x,y)表示转好第i个数且第i+1个数为x,i+2个为y 时候所用的最少次数直接枚举
i+1个数和i+2个数分别转动的次数就好了
另一个坑在于,i+1,i+2溢出怎么处理,比较平庸的是单独讨论。。。
在数组后面加了两个0,这样不仅代码长度缩短,而且最终状态也是固定的
// Created by Chenhongwei in 2015.
// Copyright (c) 2015 Chenhongwei. All rights reserved.
#include"iostream"
#include"cstdio"
#include"cstdlib"
#include"cstring"
#include"climits"
#include"queue"
#include"cmath"
#include"map"
#include"set"
#include"stack"
#include"vector"
#include"sstream"
#include"algorithm"
using namespace std;
typedef long long ll;
const int maxn=2e5+100;
int a[maxn],l[maxn],r[maxn],g[maxn];
int main()
{
//ios::sync_with_stdio(false);
// freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
cin>>T;
while(T--)
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
cin>>a[i];
memset(l,0,sizeof l);
memset(r,0,sizeof r);
memset(g,0x3f,sizeof g);
l[1]=1;
r[n]=1;
for(int i=2;i<=n;i++)
if(a[i]>a[i-1])
l[i]=l[i-1]+1;
else
l[i]=1;
for(int i=n-1;i>=1;i--)
if(a[i]<a[i+1])
r[i]=r[i+1]+1;
else
r[i]=1;
int ans=0;
for(int i=1;i<=n;i++)
{
int len=lower_bound(g+1,g+n+1,a[i])-g;
ans=max(ans,r[i]+len-1);
g[l[i]]=min(g[l[i]],a[i]);
}
cout<<ans<<endl;
}
return 0;
}