uva 1631 locker

题目大意:给出两串长度为n(n<=1000)的只含数字的串,每次操作可以将连续的1到3个数字模10加1或模10减1(即9+1=0,0-1=9)

求源串最少多少步能变成目标串。

一看就知道是dp的题目,这题状态不难想d(i,x,y)表示转好第i个数且第i+1个数为x,i+2个为y 时候所用的最少次数直接枚举

i+1个数和i+2个数分别转动的次数就好了
另一个坑在于,i+1,i+2溢出怎么处理,比较平庸的是单独讨论。。。
在数组后面加了两个0,这样不仅代码长度缩短,而且最终状态也是固定的

//  Created by Chenhongwei in 2015.
//  Copyright (c) 2015 Chenhongwei. All rights reserved.

#include"iostream"
#include"cstdio"
#include"cstdlib"
#include"cstring"
#include"climits"
#include"queue"
#include"cmath"
#include"map"
#include"set"
#include"stack"
#include"vector"
#include"sstream"
#include"algorithm"
using namespace std;
typedef long long ll;
const int maxn=2e5+100;
int a[maxn],l[maxn],r[maxn],g[maxn];
int main()
{	
	//ios::sync_with_stdio(false);
	// freopen("in.txt","r",stdin);
	//freopen("out.txt","w",stdout);
	int T;
	cin>>T;
	while(T--)
	{
		int n;
		cin>>n;
		for(int i=1;i<=n;i++)
			cin>>a[i];
		memset(l,0,sizeof l);
		memset(r,0,sizeof r);
		memset(g,0x3f,sizeof g);
		l[1]=1;
		r[n]=1;
		for(int i=2;i<=n;i++)
			if(a[i]>a[i-1])
				l[i]=l[i-1]+1;
			else 
				l[i]=1;
		for(int i=n-1;i>=1;i--)
			if(a[i]<a[i+1])
				r[i]=r[i+1]+1;
			else 
				r[i]=1;
		int ans=0;
		for(int i=1;i<=n;i++)
		{
			int len=lower_bound(g+1,g+n+1,a[i])-g;
			ans=max(ans,r[i]+len-1);
			g[l[i]]=min(g[l[i]],a[i]);
		}
		cout<<ans<<endl;
	}
	return 0;
}



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值