数据挖掘
文章平均质量分 64
chenhq1991
不是大牛,只想记录学习的过程
展开
-
《数据挖掘》基础
数据挖掘(data mining)是发现数据中有用模式的过程, 目的在于使用所发现的模式帮助解释当前的行为或预测未来的结果数据挖掘过程涉及几个方面: (1)数据收集和存储 (2)数据选取与准备 (3)模型建立与检验 (4)解释与验证结果 (5)模型应用 数据挖掘是一个处理过程,它利用一种或多种计算机学习技术,从数据库的数据中自动分析并提取知识数据挖掘会话的目的是确定数据的趋势和模式原创 2012-06-27 16:02:25 · 1097 阅读 · 0 评论 -
《数据挖掘》策略
数据挖掘策略可以广义地分为有指导和无指导两类;有指导学习通过使用输入属性来预测输出属性值的方式建模,有许多有指导数据挖掘算法仅允许单个输出属性; 由于其输出属性的结果依赖于一个或多个输入属性值,故输出属性又称为因变量; 所有用于建模的属性都是自变量有指导学习策略可以按照输出属性是离散的还是分类的,以及设计的模型是用来确定当前条件还是预测未来结果,进一步分类 【分类】,可能是所有数据挖掘策略原创 2012-06-27 17:07:58 · 1105 阅读 · 0 评论