数据结构与算法笔记:基础篇 -堆和堆排序:为什么说堆排序没有快速排序快?

概述

本章讲另外一种特殊的树,“堆” (Heap)。堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了。堆排序是一种原地、时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) 的排序算法。

前面学过快速排序,平均情况下,它的时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn) 。尽管这两种排序算法的时间复杂度都是 O ( n l o g n ) O(nlogn) O(nlogn) ,甚至堆排序比快速排序的时间复杂度还要稳定,但是,在实际开发中,快速排序的性能要比堆排序要好,这是为什么呢?


如何理解 “堆”?

前面提到,堆是一种特殊的树。现在就来看看,什么样的树才是堆。只要满足这两点要求,它就是一个堆。

  • 堆是一个完全二叉树。
  • 堆中每一个结点地值都必须大于等于(或小于等于)其子树中的每个节点的值。

分别解释下这两点。

第一点,堆必须是一个完全二叉树。还记得我们之前讲的完全二叉树的定义吗?完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的结点都靠左排列。

第二点,堆中的每一个节点的值都必须大于等于(或小于等于)其子树中的每个节点的值。实际上,还可以换一种说法,堆中每个结点的值大于等于(或小于等于)其左右子节点的值。这两种表示是等价的。

对于每一个节点的值都大于等于其子树中的每个节点的值,我们叫做 “大顶堆”。对于每一个节点的值都小于等于其子树中的每个节点的值,我们叫做 “小顶堆”。

定义弄清楚了,你来看看,下面这几个二叉树是不是堆?

在这里插入图片描述

其中第 1 和第 2 个是大顶堆,第 3 个是小顶堆,第 4 个不是堆。此外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。

如何实现一个堆?

要实现一个堆,我们先要知道,堆都支持哪些操作以及如何存储一个堆

我们之前讲过,完全二叉树比较使用用数组来存储。用数组来存储完全二叉树是非常节省内存空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

我画了一个用数组存储堆的例子,你可以看下。

在这里插入图片描述

从图中我们可以看到数组中下标为 i 的节点的左子节点,就是下标为 i*2 的节点,右子节点就是下标为 i*2 + 1 的节点,父节点就是下标为 i 2 \frac i 2 2i 的节点。

直到了如何存储一个堆,那我们再来看看,堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。(如果没有特殊说明,下面都是拿大顶堆来讲解。)

1.往堆中插入一个元素

往堆中插入一个元素后,我们需要继续满足堆的两个特性。

如果我们把新插入的元素放到堆的最后,如下图所示,是不是不符合堆的特性了?于是,我们就需要进行调整,让其满足堆的特性,这个过程叫做堆化(heapify)。

堆化实际上有两种,从下往上和从上往下。这里先讲从下往上的堆化方法。

在这里插入图片描述

堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

我这里画了一张堆化的过程分解图。可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚刚说的那种大小关系。

在这里插入图片描述

我将上面讲的往堆中插入数据的过程,翻译成代码,你可以结合着一块看。

public class Heap {
    private int[] a; // 数组,从下标1开始存储数据
    private int n; // 堆可以存储的最大数据个数
    private int count; // 堆中已存储的数据个数
    
    public Heap(int capacity) {
        a = new int[capacity];
        n = capacity;
        count = 0;
    }
    
    public void insert(int data) {
        if (count >= n) return; // 堆满了
        ++count;
        a[count] = data;
        int i = count;
        while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上
            swap(a, i, i/2); // swap()函数作用:交换下标为 i 和 i/2 的两个元素
            i = i/2;
        }
    }
}

2.删除堆顶元素

从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,可以发现,堆顶元素存储的就是数据中的最大值或最小值。

假设构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,依次类推,直到叶子节点被删除。

这里也画了一个分解图。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性。

在这里插入图片描述

实际上,我们稍微改变一下思路,就可以解决这个问题。看下面画的图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。堆不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法

在这里插入图片描述

我把上面的删除过程同样也翻译成了代码,贴在这里,你可以结合看看。

    public void removeMax() {
        if (count == 0) return; // 堆中没有数据
        a[1] = a[count];
        --count;
        heapify(a, count, 1);
    }

    private void heapify(int[] a, int n, int i) { // 自上往下堆化
        while (true) {
            int maxPos = i;
            if (i*2 <= n && a[i] > a[i*2]) maxPos = i*2;
            if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
            if (maxPos == i) break;
            swap(a, i, maxPos);
            i = maxPos;
        }
    }

我们知道,一个包含 n 个节点的完全二叉,树的高度不会超过 l o g 2 n log_2n log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O ( l o g n ) O(logn) O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度是 O ( l o g n ) O(logn) O(logn)

如何基于对实现排序

前面讲过好几种排序算法,我们再来回忆下,有时间复杂度是 O ( n 2 ) O(n^2) O(n2) 的冒泡排序、插入排序、选择排序,有时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn) 的归并排序、快速排序,还有线性排序。

这里,我们借助于对这种数据结构实现的排序算法,就叫做堆排序。这种排序算法的时间复杂度非常稳定,是 O ( n l o g n ) O(nlogn) O(nlogn),并且它还是原地排序算法。如此优秀,它是怎么做到的呢?

可以吧堆排序的过程大致分为两个大步骤,建堆排序

1.建堆

首先将数组原地建成一个堆。所谓 “原地” 就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。

第一种是借助前面讲的,在堆中插入一个元素的思路。尽管数组中包含 n 个数据,但是我们可以假设起初堆中只包含一个数据,就是下标为 1 的数据。然后,我们调用前面讲的插入操作,将下标从 2 到 n 的数据依次插入到堆中。这样我们就将包含 n 个数据的数组,组织成了堆。

第二种实现思路,跟第一种截然相反,也是这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。第二中实现思路是从后往前处理数据,并且每个数据都是从上往下堆化。

举个例子,并且画了一个第二种实现思路建堆分解步骤图。因为叶子节点往下堆只能自己跟自己比较,所以,我们直接从最后一个非叶子节点开始,依次堆化就行了。
在这里插入图片描述

在这里插入图片描述

对于程序来说,代码可能更好理解一些,所以,将第二种实现思路翻译成了代码。

    private static void buildHead(int[] a, int n) {
        for (int i = n/2; i >= 1; i--) {
            heap(a, n, i);
        }
    }

    private static void heap(int[] a, int n, int i) {
        while (true) {
            int maxPos = i;
            if (i * 2 <= n && a[i] < a[i*2]) maxPos = i * 2;
            if (i*2 + 1 <= n && a[maxPos] < a[i*2 + 1]) maxPos = i*2 + 1;
            if (maxPos == i) break;
            swap(a, i, maxPos);
            i = maxPos;
        }
    }

你可能已经发现 ,在这段代码中,我们对下标从 n 2 \frac n 2 2n 开始到 1 的数据进行堆化,下标是 n 2 + 1 \frac n 2 + 1 2n+1 到 n 的节点是叶子节点,不需要堆化。实际上,对于完全二叉树来说,下标从 n 2 + 1 \frac n 2 + 1 2n+1 到 n 的节点都是叶子节点。

现在看下,建堆操作的时间复杂度是多少呢?

每个节点堆化的时间复杂度是 O ( l o g n ) O(logn) O(logn),那 n 2 + 1 \frac n 2 + 1 2n+1 个节点堆化的总时间复杂度是不是就是 O ( n l o g n ) O(nlogn) O(nlogn) 呢?这个答案虽然也没错,但是这个值不够精确。实际上,堆排序的建堆过程的时间复杂度是 O ( n ) O(n) O(n)。我带你推导一下。

因为叶子节点不需要对话,所以需要对话的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度成正比。

我们把每一层的节点个数和对应的高度画了对来,你可以看看。我们只需要将每个节点的高度求和,得出的就是建堆的时间复杂度。
在这里插入图片描述

将每个非叶子节点的高度求和,就是下面的公式:
在这里插入图片描述

这个公式的求解稍微有点技巧,不过我们高中应该都学过,把公式左右都乘以 2,就得到另一个公式 S2。我们将 S2 错位对其,并且用 S2 减去 S1,可以得到 S。

在这里插入图片描述
S 的中间部分是一个等比数列,所以最后可以用等比数列的求和公式来计算,最终的结果就是下图的样子。

在这里插入图片描述

因为 h = l o g 2 n h=log_2n h=log2n,带入公式s,就能得到 S = O ( n ) S=O(n) S=O(n)。所以,建堆的时间复杂度就是 O ( n ) O(n) O(n)

2.排序

建堆结束之后,数组中的数据已经按照大顶堆的特性来组织。数组中的第一个元素就是堆顶。我们把它跟最后一个元素交换位置,那最大元素就放到了下标为 n 的位置。

这个过程有点类似上面将的 “删除堆定元素” 的操作,当堆顶元素移除之后,我们把下标为 n 的元素放到堆顶,然后再通过堆化的方法,将剩下的 n-1 个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n-1 的位置,一直重复这个过程,排序工作就完成了。

在这里插入图片描述

下面是代码实现,你可以对照着看看。

    public static void sort(int[] a,int n) {
        buildHead(a, n);
        int k = n;
        while (k > 1) {
            swap(a, 1, k);
            k--;
            heap(a, k, 1);
        }
    }

现在,我们再来分析下堆排序的时间复杂度、空间复杂度以及稳定性。

整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O ( n ) O(n) O(n),排序过程的时间复杂度是 O ( n l o g n ) O(nlogn) O(nlogn)

堆排序不是稳定排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

本章的内容到此就讲完了。这里要稍微解释下,在前面的讲解以及代码中,都假设堆中的数据都是从 1 的位置开始存储。那如果是从 0 开始存储,实际上处理思路是没有任何变化的,唯一变化的,可能就是代码实现的时候,计算子节点和父节点的下标的公式改变了。

如果节点的下标是 i,那左子节点的下标就是 2*i+1,右子节点的下标是 2*i+2,父节点就是 i − 1 2 \frac {i-1} 2 2i1

为什么说堆排序没有快速排序快?

主要有两方面原因。

第一点,堆排序数据访问的方式没有快速排序友好。

对于快速排序来说,数组是顺序访问的。而对于堆排序来说,数据是跳着访问的。比如,堆排序中,最重要的一个操作就是数据的堆化。比如下面的雷子,对堆顶节点进行对话,会依次访问数组下标是 1,2,4,8 的元素,而不是像快速排序那样,局部顺序访问,所以,这样对 CPU 缓存不是友好的。

在这里插入图片描述

第二点,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序。

在讲排序的时候,提过两个概念,有序度和逆序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本操作组成的,比较和交换。快速排序数据交换的次数不会比逆序度多。

但是堆排序第一步是建堆,建堆的过程会打乱数据原有的先后顺序,导致原数据的有序度降低。比如,对于一组已经有序的数据来说,经过建堆之后,数据反而变得无序了。

在这里插入图片描述

对于第二点,你可以自己做个试验看下。我们用一个记录交换次数的变量,在代码中,每次交换时,就对这个变量加一,排序完成之后,这个变量的值就是总的数据交换次数。这样你就能很直观地理解刚刚说的,堆排序比快速排序交换次数多。

小结

本章讲了堆这种数据结构。堆是一种完全二叉树。它最大的特点是:每个节点的值都大于等于(或小于等于)其子树节点的值。因此,对被分为两类,大顶堆和小顶堆。

堆中比较重要的两个操作是插入一个数据和删除堆顶元素。这两个操作都要用到堆化。插入一个数据时,我们把新插入的数据放到数组的最后,然后从下往上堆化;删除堆顶数据时,我们把数组中的最后一个元素放到堆顶,然后从上往下堆化。这两个操作的时间复杂度是 O ( l o g n ) O(logn) O(logn)

此外,还讲了堆的一个经典应用,堆排序。堆排序包括两个过程,建堆和排序。我们将下标从 n 2 \frac n 2 2n 到 1 的节点,依次进行从上到下的堆化操作,然后就可以将数组中的数据组织成堆这种数据结构。接下来,我们迭代地将堆顶元素放到堆的末尾,并将堆的大小减一,然后再对话,重复这个过程,直到堆中只剩下一个元素,整个数组中的数据就都有序排列了。

  • 7
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值