数据结构与算法笔记:基础篇 - 回溯算法:从电影《蝴蝶效应》中学习回溯算法的核心思想

概述

我们在深度优先搜索算法利用的是回溯算法思想。这个算法思想非常简单,但是应用却非常广泛。它除了用来指导像深度优先搜索这种经典的算法设计之外,还可以用在很多实际的软件开发场景中,比如正则表达式、编译原理中的语法分析等。

此外,很多经典的数学问题都可以用回溯算法解决,比如数独、八皇后、0-1 背包、图的着色、旅行商问题、全排列等等。既然应用如此广泛,本章就来学习一下这个算法思想,看看它是如何指导我们解决问题的。


如何理解 “回溯算法”?

在我们的一生中,会遇到很多重要的岔路口。在岔路口上,每个选择都会影响我们今后的人生。有的人在每个岔路口都能做出最正确的选择,最后生活、事业都达到了一个很高的高度;而有的人一路选错,最后碌碌无为。如果人生可以量化,那如何才能在岔路口做出最正确的选择,让自己的人生 “最优” 呢?

我们可以借助前面学过的贪心算法,在每次面对岔路口的时候,都做出看起来最优的选择,期望这一组选择可以使得我们的人生达到 “最优”。但是我们前面讲过,贪心算法并不一定能得到最优解。那有没有什么办法得到最优解呢?

2004 年上映了一部非常著名的电影《蝴蝶效应》,讲的就是主人公为了达到自己的目标,一直通过回溯的方法,回到童年,在关键的岔路口,重新做选择。当然,这只是科幻电影,我们的人生是无法回倒退的,但这其中蕴含的思想其实就是回溯算法。

笼统地讲,回溯算法很多时候都应用在 “搜搜” 这类问题上。不过这里说的搜索,并不是狭义上我们前面讲过的图的搜索算法,而是在一组可能的解中,搜索满足期望的解。

回溯的处理思想,有点类似枚举搜索。我们枚举所有的解,找到满足期望的解。为了有规律地枚举所有可能的解,避免遗漏和重复,我们把问题求解的过程分为多个阶段。每个阶段我们都会面对一个岔路口,我们先随意选择一条路走,当发现这条路走不通的时候(不符合预期的解),就退回到上一个岔路口,另选一种走法继续走。

理论的东西还是过于抽象,老规矩,还是举例说明下。我觉一个景点的回溯例子,我想你可能已经猜到了,那就是八皇后问题。

我们有一个 8x8 的棋盘,希望往里放 8 个棋子(皇后),每个棋子所在的行、列、对角线都不能有另外一个棋子。你可以看我画的图,第一幅图是满足条件的一种方法,第二幅图是不满足条件的。八皇后问题就是期望找到所有满足这种要求的放棋子的方式。
在这里插入图片描述

我们把这个问题划分成 8 个阶段,依次将 8 个棋子放到第一行、第二行、第三行…第八行。在放置的过程中,我们不停地检查当前方法,是否满足要求。如果满足,则跳到下一行继续放置棋子;如果不满足,那就再换一种放法,继续尝试。

回溯算法非常适合用递归代码实现,所以,我们把八皇后的算法翻译成代码。我在代码里添加了详细的注释,你可以对比看看。如果你之前没有接触过八皇后问题,建议你自己用熟悉的编程语言实现一遍,这对你理解回溯思想非常有帮助。

public class Queen8 {
    int[] result = new int[8]; // 全局变量或成员变量,下标表示行,值表示存储在哪一列

    public void cal8Queens(int row) { // 调用方式 cal8Queens(0)
        if (row == 8) {
            // 8个棋子都放置好了,打印结果
            printQueens(result);
            return; // 8个棋子都放置好了,已经没有办法再往下递归了,所以就return
        }
        for (int column = 0; column < 8; column++) { // 每一行都有八种放法
            if (isOK(row, column)) { // 有些放法不满足要求
                result[row] = column; // 第row行的棋子放到第column列
                cal8Queens(row + 1); // 考察下一行
            }
        }
    }

    private boolean isOK(int row, int column) { // 判断row行column列放置是否合适
        int leftup = column - 1, rightup = column + 1;
        for (int i = row - 1; i >= 0; i--) { // 逐渐往上一行考察
            if (result[i] == column) return false; // 第i行第column列有棋子吗?
            if (leftup >= 0) { // 考察左上对角线;第i行第leftup列有棋子吗
                if (result[i] == leftup) return false;
            }
            if (rightup < 8) {// 考察右上对角线;第i行第leftup列有棋子吗
                if (result[i] == rightup) return false;
            }
            --leftup;
            ++rightup;
        }
        return true;
    }

    private void printQueens(int[] result) { // 打印出一个二维矩阵
        for (int row = 0; row < 8; row++) {
            for (int column = 0; column < 8; column++) {
                if (result[row] == column) System.out.print("Q ");
                else System.out.print("* ");
            }
            System.out.println();
        }
        System.out.println();
    }

    public static void main(String[] args) {
        new Queen8().cal8Queens(0);
    }
}

回溯算法的经典应用

回溯算法的理论知识很容易弄懂。不过,对于新手来说,比较难的是用递归来实现。所以,我们再通过两个例子,来练习一下回溯算法的应用和实现。

1. 0-1 背包

0-1 背包是非常经典的算法问题,很多场景都可以抽象成这个问题模型。这个问题的经典解法是动态规划,不过还有一种简单单没有那么高效的解法,就是回溯算法。

0-1 背包有很多变体,这里介绍一种比较基础的。我们有一个背包,背包总的承载重量是 Wkg。现在我们有 n 个物品,每个物品的重量不等,并且不可分割。我们下载期望选择几件物品,装载到背包中。在不超过背包所能装载重量的前提下,如何让背包中物品的总重量最大?

实际上,背包问题我们在贪心算法那篇文章,已经讲过一个了,不过那里将的物品是可以分割的。本章讲的这个背包问题,物品是不可分割的,要么装要么不装,所以叫 0-1 背包问题。显然,这个问题已经无法通过贪心算法来解决了。现在来看看,用回溯算法如何来解决。

对于每个物品来说,都有两种选择,装进背包或不装进背包。对于 n 个物品来说,总的装法就有 2 n 2^n 2n 种,去掉总重量超过 Wkg 的,从剩下的装法中选择总重量接近 Wkg 的。不过,我们如何才能不重复地穷举出这 2 n 2^n 2n 种装法呢?

这里就可以使用回溯的方法。我们可以把物品依次排列,整个问题就分解为 n 个阶段,每个阶段对应一个物品怎么选择。先对第一个物品进行处理,选择装进去或者不装进去,然后再递归地处理剩下的物品。描述起来很费劲,我们直接看代码,反而会更加清晰一些。

这里还稍微用到了一点搜索剪枝的技巧,就是当发现已经选择的物品的重量超过 Wkg 之后,我们就停止继续探测剩下的物品。你可以看我写的具体代码。

    public int maxW = Integer.MIN_VALUE; // 存储背包中物品总重量的最大值
    // cw表示当前已经放进背包的总重量; i表示考察到哪个物品了
    // w背包重量;items表示每个物品的重量;n表示物品的个数
    // 假设背包可以承受重量100,物品个数10,物品重量存储在数组a中,那可以这样调用函数:
    //   f(0, 0, a, 10, 100)
    public void f(int i, int cw, int[] items, int n, int w) {
        if (cw == w || i == n) { // cw==w表示装满了;i==n表示已经考察完所有的物品了
            if (cw > maxW) maxW = cw;
            return;
        }
        f(i+1, cw, items, n, w); // 选择不装第i个物品
        if (cw + items[i] <= w) { // 已经超过背包可以承受的重量时,就不要再装了
            f(i+1, cw + items[i], items, n, w); // 选择装第i个物品
        }
    }

2.正则表达式

看懂了 0-1 背包问题,再来看另外一个例子,正则表达式。

对一个开发工程师来说,正则表达式你应该不陌生吧?在平时的开发中,或多或少都应该用过。实际上,正则表达式里最重要的一种算法思想就是回溯。

正则表达式中,最重要的就是通配符,通配符结合在一起,可以表达丰富的含义。为了方便讲解,我假设正则表达式中只包含 “*” 和 “?” 这两种通配符,并且堆这两个通配符的语义稍微做些改变,其中 “*” 匹配任意多个 (大于等于 0 个)任意字符,“?” 匹配另个或一个任意字符。基于以上背景假设,我们看下,如何用回溯算法,判断一个给定的文本,能够跟给定的正则表达式匹配?

我们依次考察正则表达式中的每个字符,当是非通配符时,我们就直接跟文本的字符进行匹配,如果相同,则继续往下处理;如果不同,则回溯。

如果遇到特殊字符的时候,我们就有多种处理方式了,也就是所谓的岔路口,比如 “*” 有多种匹配方案,可以匹配任意个文本串中的字符,我们就先随意选择一种匹配方案,然后继续考察剩下的字符。如果中途发现无法继续匹配下去了,我们就回到岔路口,重现选择一种方案,然后再继续匹配剩下的字符。

有了前面的基础,是不是这个问题就好懂多了呢?我把这个过程翻译成了代码,你可以结合着一块看下,应该有助于你理解。

public class Pattern {
    private boolean matched = false;
    private char[] pattern; // 正则表达式
    private int plen; // 正则表达式长度

    public Pattern(char[] pattern, int plen) {
        this.pattern = pattern;
        this.plen = plen;
    }

    public boolean match(char[] text, int tlen) { // 文本串及长度
        matched =false;
        rmatch(0, 0, text, tlen);
        return matched;
    }

    private void rmatch(int ti, int pj, char[] text, int tlen) {
        if (matched) return; // 如果已经匹配了,就不要继续递归了
        if (pj == plen) { // 正则表达式到结尾了
            if (ti == tlen) matched = true; // 文本串也到结尾了
            return;
        }
        if (pattern[pj] == '*') { // *匹配任意个字符
            for (int k = 0; k < tlen-ti; k++) {
                rmatch(ti + k, pj + 1, text, tlen);
            }
        } else if (pattern[pj] == '?') { // ?匹配0个或1个字符
            rmatch(ti, pj + 1, text, tlen);
            rmatch(ti + 1, pj + 1, text, tlen);
        } else if (ti < tlen && pattern[pj] == text[ti]) { // 纯字符匹配
            rmatch(ti + 1, pj + 1, text, tlen);
        }
    }
}

小结

回溯算法的思想非常简单,大部分情况下,都是用来解决广义的搜索问题,也就是说,从一组可能得解中,选择出一个满足要求的解。回溯算法非常适合用递归算法来实现,在实现的过程中,剪枝操作是提高回溯效率的一种技巧。利用剪枝,我们并不需要穷举搜索所有的情况,从而提高搜索效率。

尽管回溯算法的原理非常简单,但是却可以解决很多问题,比如我们开头提到的深度优先搜索、八皇后、0-1 背包问题、图的着色、旅行商问题、数独、全排列、正则表达式匹配等等。如果感兴趣的话,你可以自己搜索研究一下,最好还能用代码实现一下。如果这几个问题都能实现的话,你基本就掌握了回溯算法。

  • 25
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值