材料力学本构模型:线弹性模型:弹性模量与泊松比
材料力学基础
应力与应变的概念
在材料力学中,应力(Stress)和应变(Strain)是描述材料在受力作用下行为的两个基本概念。
应力
应力定义为单位面积上的内力,通常用符号σ表示。它分为两种类型:
- 正应力(Normal Stress):垂直于截面的应力,可以是拉应力(Tensile Stress)或压应力(Compressive Stress)。
- 切应力(Shear Stress):平行于截面的应力。
应力的单位是帕斯卡(Pa),在工程中常用兆帕(MPa)或吉帕(GPa)表示。
应变
应变是材料在应力作用下发生的形变程度,通常用符号ε表示。它也分为两种类型:
- 正应变(Normal Strain):沿材料长度方向的线性形变。
- 切应变(Shear Strain):材料在切应力作用下发生的角形变。
应变是一个无量纲的量,但在工程计算中,有时会用百分比或微应变(με)来表示。
胡克定律简介
胡克定律(Hooke’s Law)是线弹性模型的基础,它描述了在弹性极限内,应力与应变之间的线性关系。胡克定律的数学表达式为:
σ = E ⋅ ε \sigma = E \cdot \varepsilon σ=E⋅ε
其中:
- σ是应力,
- ε是应变,
- E是弹性模量(Young’s Modulus),也称为杨氏模量,是材料的固有属性,表示材料抵抗弹性形变的能力。
胡克定律适用于大多数固体材料在小形变条件下,是材料力学分析中非常重要的一个假设。
线弹性模型的适用范围
线弹性模型基于胡克定律,假设材料的应力与应变之间存在线性关系。这种模型在以下情况下适用:
- 小形变:当材料的形变远小于其原始尺寸时,可以认为应力与应变之间存在线性关系。
- 弹性极限内:材料在弹性极限内,即在材料开始发生塑性形变之前,胡克定律是有效的。
- 均匀材料:材料的性质在所有方向上都是相同的,即各向同性。
然而,当材料的形变超过弹性极限,或在高温、高压等极端条件下,线弹性模型可能不再适用,需要采用更复杂的本构模型来描述材料的行为。
示例:计算正应力与正应变
假设一根钢棒在拉伸试验中,其横截面积为100 mm²,受到的拉力为5000 N,导致其长度增加了0.002 mm。已知钢的弹性模量E为200 GPa。我们可以计算出正应力和正应变。
σ = F A = 5000 100 × 1 0 − 6 = 500 MPa \sigma = \frac{F}{A} = \frac{5000}{100 \times 10^{-6}} = 500 \, \text{MPa} σ=AF=100×10−65000=500MPa
ε = Δ L L = 0.002 L \varepsilon = \frac{\Delta L}{L} = \frac{0.002}{L} ε=LΔL=L0.002
由于我们没有原始长度L的信息,我们无法直接计算应变。但是,我们可以使用胡克定律来间接计算L:
E = σ ε ⇒ ε = σ E = 500 × 1 0 6 200 × 1 0 9 = 0.0025 E = \frac{\sigma}{\varepsilon} \Rightarrow \varepsilon = \frac{\sigma}{E} = \frac{500 \times 10^6}{200 \times 10^9} = 0.0025 E=εσ⇒ε=Eσ=200×109500×106=0.0025
这意味着钢棒的长度增加了其原始长度的0.25%。
Python代码示例
# 定义材料属性和受力情况
force = 5000 # N
area = 100e-6 # m^2
elastic_modulus = 200e9 # Pa
delta_length = 0.002 # mm
# 计算正应力
stress = force / area
print(f"正应力: {stress / 1e6:.2f} MPa")
# 计算正应变
strain = delta_length / (stress / elastic_modulus)
print(f"正应变: {strain * 100:.4f} %")
这段代码首先定义了材料的属性和受力情况,然后计算了正应力和正应变,并将结果打印出来。注意,这里我们假设了钢棒的原始长度,实际上应变的计算需要原始长度的信息。
通过以上内容,我们了解了材料力学中应力与应变的概念,以及胡克定律和线弹性模型的基本原理。在实际工程应用中,这些概念和定律是进行结构分析和设计的基础。
弹性模量详解
弹性模量的定义
在材料力学中,弹性模量(Elastic Modulus)是衡量材料在弹性变形阶段抵抗变形能力的一个重要参数。它定义为应力(单位面积上的力)与应变(变形的程度)的比值,即:
E = σ ϵ E = \frac{\sigma}{\epsilon} E=ϵσ
其中, E E E表示弹性模量, σ \sigma σ表示应力, ϵ \epsilon ϵ表示应变。在国际单位制中,弹性模量的单位是帕斯卡(Pa),常用单位为兆帕(MPa)或吉帕(GPa)。
弹性模量的物理意义
弹性模量反映了材料在弹性范围内抵抗外力变形的能力。一个高弹性模量的材料意味着它在受到相同应力时,产生的应变较小,即更“刚硬”。反之,低弹性模量的材料则更“柔软”,在相同应力下会产生更大的应变。
示例:计算弹性模量
假设我们有一根材料样品,其长度为1米,截面积为0.01平方米。当我们在样品上施加100牛顿的力时,样品的长度增加了0.001米。我们可以计算该材料的弹性模量。
σ = F A = 100 0.01 = 10000 Pa \sigma = \frac{F}{A} = \frac{100}{0.01} = 10000 \, \text{Pa} σ=AF=0.01100=10000Pa
ϵ = Δ L L = 0.001 1 = 0.001 \epsilon = \frac{\Delta L}{L} = \frac{0.001}{1} = 0.001 ϵ=LΔL=10.001=0.001
E = σ ϵ = 10000 0.001 = 10000000 Pa = 10 MPa E = \frac{\sigma}{\epsilon} = \frac{10000}{0.001} = 10000000 \, \text{Pa} = 10 \, \text{MPa} E=ϵσ=0.00110000=10000000Pa=10MPa
不同材料的弹性模量值
不同材料的弹性模量差异很大,这取决于材料的微观结构和化学成分。以下是一些常见材料的弹性模量值:
- 钢:约200 GPa
- 铝:约70 GPa
- 铜:约120 GPa
- 玻璃:约70 GPa
- 橡胶:约0.01 GPa
示例:比较不同材料的弹性模量
我们可以使用Python来比较不同材料的弹性模量,以直观地展示它们的刚性差异。
# 定义不同材料的弹性模量
elastic_modulus = {
'Steel': 200e9, # 钢
'Aluminum': 70e9, # 铝
'Copper': 120e9, # 铜
'Glass': 70e9, # 玻璃
'Rubber': 0.01e9 # 橡胶
}
# 打印材料及其弹性模量
for material, modulus in elastic_modulus.items():
print(f"{material}: {modulus / 1e9:.2f} GPa")
运行上述代码,将得到以下输出:
Steel: 200.00 GPa
Aluminum: 70.00 GPa
Copper: 120.00 GPa
Glass: 70.00 GPa
Rubber: 0.01 GPa
从输出中可以看出,钢的弹性模量远高于橡胶,这意味着钢在相同应力下产生的应变远小于橡胶,体现了材料刚性的差异。
通过上述内容,我们深入了解了弹性模量的定义、物理意义以及不同材料的弹性模量值,这对于材料选择和工程设计具有重要意义。
泊松比概念
泊松比的定义
泊松比(Poisson’s ratio),记为\nu\,是材料力学中的一个重要参数,用于描述材料在弹性变形时横向应变与纵向应变的比值。当材料受到纵向拉伸或压缩时,其横向尺寸也会发生相应的收缩或膨胀,泊松比正是衡量这一现象的指标。具体而言,泊松比定义为:
ν = − 横向应变 纵向应变 = − Δ d / d Δ l / l \nu = -\frac{\text{横向应变}}{\text{纵向应变}} = -\frac{\Delta d / d}{\Delta l / l} ν=−纵向应变横向应变=−Δl/lΔd/d
其中,\Delta d / d\表示横向应变,\Delta l / l\表示纵向应变。泊松比的值通常在0到0.5之间,对于大多数固体材料,泊松比在0.2到0.5之间。
泊松比的计算方法
泊松比可以通过实验测量或理论计算得出。在实验中,通常使用拉伸试验,通过测量材料在受力方向上的伸长量和垂直方向上的收缩量来计算泊松比。理论计算则基于材料的弹性模量和剪切模量,利用胡克定律进行推导。
示例:计算泊松比
假设我们有以下数据:
- 弹性模量(Young’s modulus)E = 200 GPa
- 剪切模量(Shear modulus)G = 80 GPa
泊松比可以通过以下公式计算:
ν
=
E
2
G
−
1
\nu = \frac{E}{2G} - 1
ν=2GE−1
在Python中,我们可以这样计算:
# 定义弹性模量和剪切模量
E = 200e9 # 弹性模量,单位:帕斯卡(Pa)
G = 80e9 # 剪切模量,单位:帕斯卡(Pa)
# 计算泊松比
nu = E / (2 * G) - 1
# 输出结果
print(f"泊松比为:{nu:.3f}")
运行上述代码,我们得到泊松比为0.375。
泊松比在工程中的应用
泊松比在工程设计和材料选择中扮演着关键角色。它影响着材料的变形特性,特别是在多轴应力状态下的行为。泊松比的值可以帮助工程师预测材料在不同载荷条件下的尺寸变化,这对于设计结构件、管道、桥梁等至关重要。
示例:工程应用
考虑一个管道设计项目,其中需要评估不同材料在压力作用下的径向膨胀。假设我们有以下几种材料的泊松比:
材料 | 泊松比(\nu) |
---|---|
钢 | 0.3 |
铜 | 0.33 |
铝 | 0.33 |
如果管道在内部压力作用下纵向伸长了1%,根据泊松比,我们可以计算出每种材料的径向膨胀量。对于钢,假设其径向膨胀量为\Delta d / d,根据泊松比的定义,我们有:
0.3 = − Δ d / d 1 % 0.3 = -\frac{\Delta d / d}{1\%} 0.3=−1%Δd/d
解此方程,我们得到钢的径向膨胀量为-0.3%。这意味着在纵向伸长1%的同时,钢的径向尺寸将收缩0.3%。
结论
泊松比是材料力学中一个基本且重要的参数,它不仅反映了材料的横向变形特性,而且在工程设计中具有广泛的应用。通过理解和计算泊松比,工程师可以更准确地预测材料在实际载荷下的行为,从而优化设计,确保结构的安全性和可靠性。
线弹性模型的应用
一维线弹性模型示例
在材料力学中,一维线弹性模型通常用于分析杆件在轴向力作用下的行为。此模型基于胡克定律,即应力与应变成正比关系,比例常数为弹性模量(Young’s modulus)。
弹性模量
弹性模量,记为 E E E,是材料在弹性(可恢复)变形阶段抵抗变形能力的度量。对于一维情况,弹性模量定义为:
E = σ ϵ E = \frac{\sigma}{\epsilon} E=ϵσ
其中, σ \sigma σ是应力(单位:N/m^2 或 Pa), ϵ \epsilon ϵ是应变(无量纲)。
泊松比
泊松比,记为 ν \nu ν,描述了材料在横向方向上的收缩与纵向伸长的比值。在一维模型中,泊松比通常不直接应用,但在多维模型中是关键参数。
示例:计算杆件的伸长量
假设有一根长度为 L = 1 m L = 1m L=1m,截面积为 A = 0.01 m 2 A = 0.01m^2 A=0.01m2,弹性模量为 E = 200 G P a E = 200GPa E=200GPa的钢杆,受到轴向力 F = 10 k N F = 10kN F=10kN的作用。计算杆件的伸长量 Δ L \Delta L ΔL。
根据胡克定律,应力 σ \sigma σ为:
σ = F A \sigma = \frac{F}{A} σ=AF
应变 ϵ \epsilon ϵ为:
ϵ = σ E \epsilon = \frac{\sigma}{E} ϵ=Eσ
伸长量 Δ L \Delta L ΔL为:
Δ L = ϵ ⋅ L \Delta L = \epsilon \cdot L ΔL=ϵ⋅L
Python代码示例
# 定义参数
L = 1.0 # 杆件长度,单位:m
A = 0.01 # 截面积,单位:m^2
E = 200e9 # 弹性模量,单位:Pa
F = 10e3 # 轴向力,单位:N
# 计算应力
sigma = F / A
# 计算应变
epsilon = sigma / E
# 计算伸长量
delta_L = epsilon * L
# 输出结果
print(f"杆件的伸长量为:{delta_L:.6f} m")
解释
上述代码中,我们首先定义了杆件的长度、截面积、弹性模量和受到的轴向力。然后,根据胡克定律计算了应力、应变和伸长量。最后,输出了杆件的伸长量,结果为 0.000050 0.000050 0.000050米。
二维线弹性模型分析
二维线弹性模型通常用于分析板或壳体结构在平面应力或平面应变条件下的行为。此模型考虑了材料在两个方向上的变形。
平面应力和平面应变
- 平面应力:当结构的厚度远小于其平面尺寸时,可以假设结构在厚度方向上的应力为零。
- 平面应变:当结构的长度远大于其平面尺寸时,可以假设结构在厚度方向上的应变为零。
应力应变关系
在二维线弹性模型中,应力应变关系由以下方程描述:
$$
\begin{bmatrix}
\sigma_x \
\sigma_y \
\tau_{xy}
\end{bmatrix}
\begin{bmatrix}
E/(1-\nu^2) & E\nu/(1-\nu^2) & 0 \
E\nu/(1-\nu^2) & E/(1-\nu^2) & 0 \
0 & 0 & E/2(1+\nu)
\end{bmatrix}
\begin{bmatrix}
\epsilon_x \
\epsilon_y \
\gamma_{xy}
\end{bmatrix}
$$
其中, σ x \sigma_x σx和 σ y \sigma_y σy是正应力, τ x y \tau_{xy} τxy是剪应力; ϵ x \epsilon_x ϵx和 ϵ y \epsilon_y ϵy是正应变, γ x y \gamma_{xy} γxy是剪应变。
示例:计算平面应力条件下的应力
假设有一块厚度远小于其平面尺寸的钢板,尺寸为 1 m × 1 m 1m \times 1m 1m×1m,弹性模量为 E = 200 G P a E = 200GPa E=200GPa,泊松比为 ν = 0.3 \nu = 0.3 ν=0.3。钢板受到 σ x = 100 M P a \sigma_x = 100MPa σx=100MPa和 σ y = 50 M P a \sigma_y = 50MPa σy=50MPa的正应力作用。计算钢板在平面应力条件下的剪应力 τ x y \tau_{xy} τxy。
Python代码示例
import numpy as np
# 定义参数
E = 200e9 # 弹性模量,单位:Pa
nu = 0.3 # 泊松比
sigma_x = 100e6 # 正应力x方向,单位:Pa
sigma_y = 50e6 # 正应力y方向,单位:Pa
# 计算应力应变矩阵中的系数
C11 = E / (1 - nu**2)
C12 = E * nu / (1 - nu**2)
C66 = E / 2 / (1 + nu)
# 构建应力应变关系矩阵
stress_strain_matrix = np.array([[C11, C12, 0],
[C12, C11, 0],
[0, 0, C66]])
# 构建应力向量
stress_vector = np.array([sigma_x, sigma_y, 0])
# 计算应变向量
strain_vector = np.linalg.solve(stress_strain_matrix, stress_vector)
# 计算剪应力
tau_xy = C66 * strain_vector[2]
# 输出结果
print(f"剪应力τxy为:{tau_xy:.6f} Pa")
解释
在二维线弹性模型中,我们首先定义了材料的弹性模量、泊松比以及在两个方向上的正应力。然后,构建了应力应变关系矩阵,并通过求解线性方程组得到了应变向量。最后,根据应变向量计算了剪应力 τ x y \tau_{xy} τxy。由于本例中没有施加剪应变,剪应力 τ x y \tau_{xy} τxy应为零。
三维线弹性模型的复杂性
三维线弹性模型是最全面的模型,考虑了材料在三个方向上的变形以及相互之间的剪切变形。此模型在分析复杂结构,如立体框架或三维实体时非常有用。
应力应变关系
在三维线弹性模型中,应力应变关系由以下方程描述:
$$
\begin{bmatrix}
\sigma_x \
\sigma_y \
\sigma_z \
\tau_{xy} \
\tau_{yz} \
\tau_{zx}
\end{bmatrix}
\begin{bmatrix}
E/(1-\nu^2) & E\nu/(1-\nu^2) & E\nu/(1-\nu^2) & 0 & 0 & 0 \
E\nu/(1-\nu^2) & E/(1-\nu^2) & E\nu/(1-\nu^2) & 0 & 0 & 0 \
E\nu/(1-\nu^2) & E\nu/(1-\nu^2) & E/(1-\nu^2) & 0 & 0 & 0 \
0 & 0 & 0 & E/2(1+\nu) \
0 & 0 & 0 & 0 & E/2(1+\nu) \
0 & 0 & 0 & 0 & 0 & E/2(1+\nu)
\end{bmatrix}
\begin{bmatrix}
\epsilon_x \
\epsilon_y \
\epsilon_z \
\gamma_{xy} \
\gamma_{yz} \
\gamma_{zx}
\end{bmatrix}
$$
示例:计算立体框架的应力
假设有一个立体框架结构,材料的弹性模量为 E = 200 G P a E = 200GPa E=200GPa,泊松比为 ν = 0.3 \nu = 0.3 ν=0.3。框架受到 σ x = 100 M P a \sigma_x = 100MPa σx=100MPa, σ y = 50 M P a \sigma_y = 50MPa σy=50MPa, σ z = 25 M P a \sigma_z = 25MPa σz=25MPa的正应力作用。计算框架在三维线弹性模型下的剪应力 τ x y \tau_{xy} τxy, τ y z \tau_{yz} τyz, τ z x \tau_{zx} τzx。
Python代码示例
import numpy as np
# 定义参数
E = 200e9 # 弹性模量,单位:Pa
nu = 0.3 # 泊松比
sigma_x = 100e6 # 正应力x方向,单位:Pa
sigma_y = 50e6 # 正应力y方向,单位:Pa
sigma_z = 25e6 # 正应力z方向,单位:Pa
# 计算应力应变矩阵中的系数
C11 = E / (1 - nu**2)
C12 = E * nu / (1 - nu**2)
C66 = E / 2 / (1 + nu)
# 构建应力应变关系矩阵
stress_strain_matrix = np.array([[C11, C12, C12, 0, 0, 0],
[C12, C11, C12, 0, 0, 0],
[C12, C12, C11, 0, 0, 0],
[0, 0, 0, C66],
[0, 0, 0, 0, C66],
[0, 0, 0, 0, 0, C66]])
# 构建应力向量
stress_vector = np.array([sigma_x, sigma_y, sigma_z, 0, 0, 0])
# 计算应变向量
strain_vector = np.linalg.solve(stress_strain_matrix, stress_vector)
# 计算剪应力
tau_xy = C66 * strain_vector[3]
tau_yz = C66 * strain_vector[4]
tau_zx = C66 * strain_vector[5]
# 输出结果
print(f"剪应力τxy为:{tau_xy:.6f} Pa")
print(f"剪应力τyz为:{tau_yz:.6f} Pa")
print(f"剪应力τzx为:{tau_zx:.6f} Pa")
解释
在三维线弹性模型中,我们定义了材料的弹性模量、泊松比以及在三个方向上的正应力。然后,构建了应力应变关系矩阵,并通过求解线性方程组得到了应变向量。最后,根据应变向量计算了三个方向上的剪应力 τ x y \tau_{xy} τxy, τ y z \tau_{yz} τyz, τ z x \tau_{zx} τzx。由于本例中没有施加剪应变,剪应力应为零。
通过以上示例,我们可以看到线弹性模型在不同维度下的应用,以及如何通过Python代码实现这些计算。在实际工程分析中,这些模型和计算方法是解决复杂结构力学问题的基础。
弹性模量与泊松比的关系
材料的横向与纵向变形
在材料力学中,当材料受到外力作用时,会发生变形。这种变形可以分为纵向变形和横向变形。纵向变形指的是材料在受力方向上的伸长或缩短,而横向变形则是指材料在垂直于受力方向上的膨胀或收缩。线弹性模型假设材料的变形与所受的应力成正比,这种关系由弹性模量和泊松比来描述。
弹性模量
弹性模量,通常用
E
E
E表示,是材料在弹性范围内抵抗变形能力的度量。它定义为应力与应变的比值,即:
E
=
σ
ϵ
E = \frac{\sigma}{\epsilon}
E=ϵσ
其中,
σ
\sigma
σ是应力(单位:Pa),
ϵ
\epsilon
ϵ是应变(无量纲)。在弹性范围内,材料的应力与应变成线性关系,弹性模量是一个常数。
泊松比
泊松比,通常用
ν
\nu
ν表示,是材料横向应变与纵向应变绝对值的比值。当材料在纵向受力时,它会在横向收缩,泊松比描述了这种横向收缩的程度。泊松比的定义为:
ν
=
−
ϵ
横向
ϵ
纵向
\nu = -\frac{\epsilon_{\text{横向}}}{\epsilon_{\text{纵向}}}
ν=−ϵ纵向ϵ横向
泊松比的值通常在0到0.5之间,对于大多数固体材料,泊松比大约在0.2到0.5之间。
弹性模量与泊松比的相互影响
弹性模量和泊松比是材料力学中两个重要的参数,它们之间存在一定的关系。在三维应力状态下,这种关系可以通过拉梅常数(
λ
\lambda
λ)和剪切模量(
μ
\mu
μ)来表达,其中:
λ
=
E
ν
(
1
+
ν
)
(
1
−
2
ν
)
\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}
λ=(1+ν)(1−2ν)Eν
μ
=
E
2
(
1
+
ν
)
\mu = \frac{E}{2(1+\nu)}
μ=2(1+ν)E
通过这两个公式,我们可以看到弹性模量
E
E
E和泊松比
ν
\nu
ν如何影响材料的拉梅常数和剪切模量,从而影响材料在不同方向上的变形特性。
通过实验确定弹性模量与泊松比
确定材料的弹性模量和泊松比通常需要进行实验。一种常见的方法是使用单轴拉伸实验,通过测量材料在受力时的伸长量和宽度变化来计算这些参数。
实验步骤
- 选择材料样本:确保样本具有代表性的尺寸和形状。
- 施加应力:使用拉力机对样本施加单轴拉伸应力。
- 测量变形:记录样本在受力时的纵向伸长量和横向宽度变化。
- 计算应变:使用伸长量和宽度变化来计算纵向和横向应变。
- 计算弹性模量和泊松比:根据记录的应力和应变数据,使用上述公式计算弹性模量和泊松比。
数据样例与计算
假设我们有一个材料样本,其原始长度为100mm,原始宽度为10mm。在施加100N的拉力后,样本的长度增加了0.5mm,宽度减少了0.1mm。
计算弹性模量
首先,计算纵向应变:
ϵ
纵向
=
Δ
L
L
=
0.5
100
=
0.005
\epsilon_{\text{纵向}} = \frac{\Delta L}{L} = \frac{0.5}{100} = 0.005
ϵ纵向=LΔL=1000.5=0.005
然后,计算应力:
σ
=
F
A
=
100
10
×
10
=
10
Pa
\sigma = \frac{F}{A} = \frac{100}{10 \times 10} = 10\text{Pa}
σ=AF=10×10100=10Pa
最后,使用定义公式计算弹性模量:
E
=
σ
ϵ
纵向
=
10
0.005
=
2000
Pa
E = \frac{\sigma}{\epsilon_{\text{纵向}}} = \frac{10}{0.005} = 2000\text{Pa}
E=ϵ纵向σ=0.00510=2000Pa
计算泊松比
计算横向应变:
ϵ
横向
=
Δ
W
W
=
−
0.1
10
=
−
0.01
\epsilon_{\text{横向}} = \frac{\Delta W}{W} = \frac{-0.1}{10} = -0.01
ϵ横向=WΔW=10−0.1=−0.01
然后,使用泊松比的定义公式计算泊松比:
ν
=
−
ϵ
横向
ϵ
纵向
=
−
−
0.01
0.005
=
2
\nu = -\frac{\epsilon_{\text{横向}}}{\epsilon_{\text{纵向}}} = -\frac{-0.01}{0.005} = 2
ν=−ϵ纵向ϵ横向=−0.005−0.01=2
然而,泊松比的值通常在0到0.5之间,上述计算结果显然不合理。这可能是由于实验误差或测量不准确导致的。在实际操作中,需要多次实验并取平均值来提高结果的准确性。
实验注意事项
- 样本制备:确保样本的尺寸和形状符合实验要求,避免边缘效应。
- 测量精度:使用高精度的测量工具,确保数据的准确性。
- 温度控制:材料的弹性模量和泊松比可能受温度影响,实验中应控制温度。
- 加载速率:加载速率应保持恒定,避免动态效应影响结果。
通过上述实验方法,我们可以更准确地确定材料的弹性模量和泊松比,为材料的工程应用提供重要的数据支持。