结构力学数值方法:有限元法(FEM):有限元法中的数值积分
绪论
有限元法的基本概念
有限元法(Finite Element Method, FEM)是一种用于求解复杂工程问题的数值方法,尤其在结构力学领域中应用广泛。它将连续的结构或系统离散化为有限数量的单元,每个单元用一组节点来表示,通过在这些节点上建立和求解微分方程的近似解,来获得整个结构的解。FEM的核心在于将偏微分方程转化为代数方程组,从而使得计算机可以处理。
节点与单元
在有限元模型中,结构被划分为多个小的、简单的几何形状,称为单元。单元之间的连接点称为节点。节点和单元构成了有限元网格,是FEM分析的基础。
形函数
形函数(Shape Function)用于描述单元内部的位移分布。它将节点的位移值映射到单元内部的任意点。形函数的选择直接影响到解的精度和计算效率。
刚度矩阵与载荷向量
在FEM中,每个单元都有一个刚度矩阵,它描述了单元内部的力与位移之间的关系。所有单元的刚度矩阵组合起来形成整个结构的全局刚度矩阵。载荷向量则包含了作用在结构上的外力和边界条件。
数值积分在FEM中的重要性
在有限元分析中,求解结构的响应通常涉及到对单元内部的积分计算。这些积分可以是计算单元的刚度矩阵、质量矩阵,或者是求解非线性问题时的内力计算。由于单元的形状和材料属性可能随位置变化,直接积分往往非常复杂,