题面:
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than
O(n2)
. - There is only one duplicate number in the array, but it could be repeated more than once
题解:原本想快排下,两个循环若有一样的值,便是所求。
class Solution {
public:
int findDuplicate(vector<int>& nums) {
int i;
int j;
sort(nums.begin(),nums.end());
for(i=0;i<nums.size();i++){
for(j=i+1;j<nums.size();j++){
if(nums[i]==nums[j])
return nums[i];
}
}
}
};
惊讶的是也能过?后来看到条件1不能改变数组。就想到2分查找。
int findDuplicate(vector<int>& nums) {
int n=nums.size()-1;
int low=1;
int high=n;
int mid;
while(low<high){
mid=(low+high)/2;
int count=0;
for(int num:nums){
if(num<=mid) count++;
}
if(count>mid) high=mid;
else low=mid+1;
}
return low;
}