湖仓一体介绍及spark操作hudi

一、Lambda架构

在这里插入图片描述

基于 Lambda 架构建设的实时数仓存在较多的问题。如上图的这个架构图,一条链路是基于 kafka 中转的一条实时链路(秒级),另一条是离线链路(天级),甚至有些公司会有第三条准实时链路(15 分钟~1 小时)。
Lambda 架构缺点:
1、两条链路对应两份数据,很多时候实时链路的处理结果和离线链路的处理结果对不上。
2、Kafka 无法存储海量数据, 无法基于当前的 OLAP 分析引擎高效查询 Kafka 中的数据。
3、Lambda 维护成本高。代码、数据血缘、Schema 等都需要两套。运维、监控等成本都非常高。

二、Kappa架构

在这里插入图片描述

Kappa架构缺点
1.Kafka无法支撑海量数据存储
2.Kafka无法支持高效的OLAP
3.无法复用数据血缘管理体系
4.Kfaka不支持update/upsert

三、湖仓一体架构

在这里插入图片描述

湖仓一体项目分层架构设计:
在这里插入图片描述
在这里插入图片描述

数据湖优点:
1.轻松地收集数据:数据湖与数据仓库的一大区别就是,Schema On Read,即在使用数据时才需要Schema信息;而数据仓库是Schema On Write,即在存储数据时就需要设计好Schema。这样,由于对数据写入没有限制,数据湖可以更容易的收集数据。

2.从数据中发掘更多价值:数据仓库和数据市场由于只使用数据中的部分属性,所以只能回答一些事先定义好的问题;而数据湖存储所有最原始、最细节的数据,所以可以回答更多的问题。并且数据湖允许组织中的各种角色通过自助分析工具,对数据进行分析,以及利用AI、机器学习的技术,从数据中发掘更多的价值。

3.消除数据孤岛:数据湖中汇集了来自各个系统中的数据,这就消除了数据孤岛问题。

4.具有更好的扩展性和敏捷性:数据湖可以利用分布式文件系统来存储数据,因此具有很高的扩展能力。开源技术的使用还降低了存储成本。数据湖的结构没那么严格,因此天生具有更高的灵活性,从而提高了敏捷性。

四、Apache Hudi、Apache Iceberg 和 Delta Lake

定性上讲,三者均为 Data Lake 的数据存储中间层,其数据管理的功能均是基于一系列的 meta 文件。meta 文件的角色类似于数据库的 catalog/wal,起到 schema 管理、事务管理和数据管理的功能。与数据库不同的是,这些 meta 文件是与数据文件一起存放在存储引擎中的,用户可以直接看到。这种做法直接继承了大数据分析中数据对用户可见的传统,但是无形中也增加了数据被不小心破坏的风险。一旦某个用户不小心删了 meta 目录,表就被破坏了,想要恢复难度非常大。

Meta 文件包含有表的 schema 信息。因此系统可以自己掌握 Schema 的变动,提供 Schema 演化的支持。Meta 文件也有 transaction log 的功能(需要文件系统有原子性和一致性的支持)。所有对表的变更都会生成一份新的 meta 文件,于是系统就有了 ACID 和多版本的支持,同时可以提供访问历史的功能。在这些方面,三者是相同的。

1.Hudi

Hudi 的设计目标正如其名,Hadoop Upserts Deletes and Incrementals(原为 Hadoop Upserts anD Incrementals),强调了其主要支持 Upserts、Deletes 和 Incremental 数据处理,其主要提供的写入工具是 Spark HudiDataSource API 和自身提供的 DeltaStreamer,均支持三种数据写入方式:UPSERT,INSERT 和 BULK_INSERT。其对 Delete 的支持也是通过写入时指定一定的选项支持的,并不支持纯粹的 delete 接口。

其典型用法是将上游数据通过 Kafka 或者 Sqoop,经由 DeltaStreamer 写入 Hudi。DeltaStreamer 是一个常驻服务,不断地从上游拉取数据,并写入 hudi。写入是分批次的,并且可以设置批次之间的调度间隔。默认间隔为 0,类似于 Spark Streaming 的 As-soon-as-possible 策略。随着数据不断写入,会有小文件产生。对于这些小文件,DeltaStreamer 可以自动地触发小文件合并的任务。

在查询方面,Hudi 支持 Hive、Spark、Presto。

在性能方面,Hudi 设计了 HoodieKey,一个类似于主键的东西。HoodieKey有 Min/Max 统计,BloomFilter,用于快速定位 Record 所在的文件。在具体做 Upserts 时,如果 HoodieKey不存在于 BloomFilter,则执行插入,否则,确认 HoodieKey是否真正存在,如果真正存在,则执行 update。这种基于 HoodieKey + BloomFilter 的 upserts 方法是比较高效的,否则,需要做全表的 Join 才能实现 upserts。对于查询性能,一般需求是根据查询谓词生成过滤条件下推至 datasource。Hudi 这方面没怎么做工作,其性能完全基于引擎自带的谓词下推和 partition prune 功能。

Hudi 的另一大特色是支持 Copy On Write 和 Merge On Read。前者在写入时做数据的 merge,写入性能略差,但是读性能更高一些。后者读的时候做 merge,读性能查,但是写入数据会比较及时,因而后者可以提供近实时的数据分析能力。

最后,Hudi 提供了一个名为 run_sync_tool 的脚本同步数据的 schema 到 Hive 表。Hudi 还提供了一个命令行工具用于管理 Hudi 表。
在这里插入图片描述

2.Iceberg

Iceberg 没有类似的 HoodieKey 设计,其不强调主键。上文已经说到,没有主键,做 update/delete/merge 等操作就要通过 Join 来实现,而 Join 需要有一个 类似 SQL 的执行引擎。Iceberg 并不绑定某个引擎,也没有自己的引擎,所以 Iceberg 并不支持 update/delete/merge。如果用户需要 update 数据,最好的方法就是找出哪些 partition 需要更新,然后通过 overwrite 的方式重写数据。

Iceberg 官网提供的 quickstart 以及 Spark 的接口均只是提到了使用 Spark dataframe API 向 Iceberg 写数据的方式,没有提及别的数据摄入方法。至于使用 Spark Streaming 写入,代码中是实现了相应的 StreamWriteSupport,应该是支持流式写入,但是貌似官网并未明确提及这一点。支持流式写入意味着有小文件问题,对于怎么合并小文件,官网也未提及。我怀疑对于流式写入和小文件合并,可能 Iceberg 还没有很好的生产 ready,因而没有提及(纯属个人猜测)。

在查询方面,Iceberg 支持 Spark、Presto。
Iceberg 在查询性能方面做了大量的工作。值得一提的是它的 hidden partition 功能。Hidden partition 意思是说,对于用户输入的数据,用户可以选取其中某些列做适当的变换(Transform)形成一个新的列作为 partition 列。这个 partition 列仅仅为了将数据进行分区,并不直接体现在表的 schema 中。例如,用户有 timestamp 列,那么可以通过 hour(timestamp) 生成一个 timestamp_hour 的新分区列。

timestamp_hour 对用户不可见,仅仅用于组织数据。Partition 列有 partition 列的统计,如该 partition 包含的数据范围。当用户查询时,可以根据 partition 的统计信息做 partition prune。

除了 hidden partition,Iceberg 也对普通的 column 列做了信息收集。这些统计信息非常全,包括列的 size,列的 value count,null value count,以及列的最大最小值等等。这些信息都可以用来在查询时过滤数据。

Iceberg 提供了建表的 API,用户可以使用该 API 指定表明、schema、partition 信息等,然后在 Hive catalog 中完成建表。

在这里插入图片描述

3.Delta

Delta 的定位是流批一体的 Data Lake 存储层,支持 update/delete/merge。由于出自 Databricks,spark 的所有数据写入方式,包括基于 dataframe 的批式、流式,以及 SQL 的 Insert、Insert Overwrite 等都是支持的(开源的 SQL 写暂不支持,EMR 做了支持)。与 Iceberg 类似,Delta 不强调主键,因此其 update/delete/merge 的实现均是基于 spark 的 join 功能。在数据写入方面,Delta 与 Spark 是强绑定的,这一点 Hudi 是不同的:Hudi 的数据写入不绑定 Spark(可以用 Spark,也可以使用 Hudi 自己的写入工具写入)。

在查询方面,开源 Delta 目前支持 Spark 与 Presto,但是,Spark 是不可或缺的,因为 delta log 的处理需要用到 Spark。这意味着如果要用 Presto 查询 Delta,查询时还要跑一个 Spark 作业。更为蛋疼的是,Presto 查询是基于 SymlinkTextInputFormat。在查询之前,要运行 Spark 作业生成这么个 Symlink 文件。如果表数据是实时更新的,意味着每次在查询之前先要跑一个 SparkSQL,再跑 Presto。这样的话为何不都在 SparkSQL 里搞定呢?这是一个非常蛋疼的设计。为此,EMR 在这方面做了改进,支持了 DeltaInputFormat,用户可以直接使用 Presto 查询 Delta 数据,而不必事先启动一个 Spark 任务。

在查询性能方面,开源的 Delta 几乎没有任何优化。Iceberg 的 hidden partition 且不说,普通的 column 的统计信息也没有。Databricks 对他们引以为傲的 Data Skipping 技术做了保留。不得不说这对于推广 Delta 来说不是件好事。EMR 团队在这方面正在做一些工作,希望能弥补这方面能力的缺失。

Delta 在数据 merge 方面性能不如 Hudi,在查询方面性能不如 Iceberg,是不是意味着 Delta 一无是处了呢?其实不然。Delta 的一大优点就是与 Spark 的整合能力(虽然目前仍不是很完善,但 Spark-3.0 之后会好很多),尤其是其流批一体的设计,配合 multi-hop 的 data pipeline,可以支持分析、Machine learning、CDC 等多种场景。使用灵活、场景支持完善是它相比 Hudi 和 Iceberg 的最大优点。另外,Delta 号称是 Lambda 架构、Kappa 架构的改进版,无需关心流批,无需关心架构。这一点上 Hudi 和 Iceberg 是力所不及的。
在这里插入图片描述

五、Hudi、Iceberg和Delta对比

在这里插入图片描述
在这里插入图片描述

六、Hudi使用

1.特性

(1)快速upsert,可插入索引
(2)以原子方式操作数据并具有回滚功能
(3)写入器之和查询之间的快照隔离
(4)savepoint用户数据恢复的保存点
(5)管理文件大小,使用统计数据布局
(6)异步压缩行列数据
(7)具有时间线来追踪元数据血统
(8)通过聚类优化数据集

2.概要

  1. 1Timeline
    hudi的核心是维护在不同时刻在表上执行的所有操作的时间表,提供表的即时视图,同时还有效地支持按时间顺序检索数据。Hudi的时刻由以下组件组成:
    (1)Instant action: 在表上执行的操作类型
    (2)Instant time: 即时时间,通常是一个时间戳,它安装action的开始时间单调递增
    (3)State: 时刻的当前状态

hudi保证在时间线上的操作都是基于即时时间的,两者的时间保持一致并且是原子性的。
acion操作包括:
(1)commits: 表示将一批数据原子写入表中
(2)cleans: 清除表中不在需要的旧版本文件的后台活动。
(3)delta_commit:增量提交是指将一批数据原子性写入MergeOnRead类型的表中,其中部分或者所有数据可以写入增量日志中。
(4)compaction: 协调hudi中差异数据结构的后台活动,例如:将更新从基于行的日志文件变成列格式。在内部,压缩的表现为时间轴上的特殊提交。
(5)rollback:表示提交操作不成功且已经回滚,会删除在写入过程中产生的数据
(6)savepoint:将某些文件标记为“已保存”,以便清理程序时不会被清楚。在需要数据恢复的情况下,有助于将数据集还原到时间轴上某个点。

 任何时刻都会处于以下state:

(1)requested:表示一个动作已被安排,但尚未启动
(2)inflight:表是当前正在执行操作
(3)completed:表是在时间线上完成了操作

在这里插入图片描述

上图显示了hudi表上10:00和10:20之间发生的更新插入,每5分钟一次,将提交元数据留以及其他后台清理/压缩操作在hudi时间轴上。观察的关键点是,提交时间表示数据的到达时间,而实际数据组织则反应了实际时间或事件时间,即数据所反映的从07:00开始的每小时时段。在权衡数据延迟和完整性,这是两个关键概念。
如果有延迟到达的数据(事件时间为9:00的数据在10:20达到,延迟>1小时),可以看到upsert将数据生成到更旧的时间段/文件夹中。在时间轴的帮助下,增量查询可以只提取10:00以后成功提交的新数据,并非高效地只消费更改过的文件,且无需扫描更大的文件范围,例如07:00后的所有时间段。
2.2 File Layout
Hudi会在DFS分布式文件系统上的basepath基本路径下组织成目录结构。每张对应的表都会成多个分区,这些分区是包含该分区的数据文件的文件夹,与hive的目录结构非常相似。
在每个分区内,文件被组织成文件组,文件id为唯一标识。每个文件组包含多个切片,其中每个切片包含在某个提交/压缩即时时间生成的基本列文件(parquet文件),以及自生成基本文件以来对基本文件的插入/更新的一组日志文件(*.log)。Hudi采用MVCC设计,其中压缩操作会将日志和基本文件合并成新的文件片,清理操作会将未使用/较旧的文件片删除来回收DFS上的空间。

  MVCC(Multi-Version Concurrency Control):多版本并行发控制机制
  Multi-Versioning:产生多版本的数据内容,使得读写可以不互相阻塞
  Concurrency Control:并发控制,使得并行执行的内容能保持串行化结果   

2.3 Index
Hudi通过索引机制将映射的给定的hoodie key(record key+partition path)映射到文件id(唯一标示),从而提供高效的upsert操作。记录键和文件组/文件ID之间的这种映射,一旦记录的第一个版本写入文件就永远不会改变。
2.4 Table Types& Queries
Hudi表类型定义了如何在DFS上对数据进行索引和布局,以及如何在此类组织上实现上述操作和时间轴活动(即如何写入数据)。同样,查询类型定义了底层数据如何暴露给查询(即如何读取数据)。
Table Type Supported Query types
Copy on Write (写时复制) 快照查询+增量查询
Merge on Read (读时合并) 快照查询+增量查询+读取优化查询(近实时)

 Table Types:

(1)Copy on Write:使用列式存储来存储数据(例如:parquet),通过在写入期间执行同步合并来简单地更新和重现文件
(2)Merge on Read:使用列式存储(parquet)+行式文件(arvo)组合存储数据。更新记录到增量文件中,然后进行同步或异步压缩来生成新版本的列式文件。

 下面总结了两种表类型之间的权衡

权衡 CopyOnWrite MergeOnRead
数据延迟 高 低
查询延迟 低 高
Update(I/O) 更新成本 高(重写整个Parquet文件) 低(追加到增量日志)
Parquet File Size 低(更新成本I/O高) 较大(低更新成本)
Write Amplification(WA写入放大) 大 低(取决于压缩策略)

Query Types:
(1)Snapshot Queries:快照查询,在此视图上的查询将看到某个提交和压缩操作的最新快照。对于merge on read的表,它通过即时合并最新文件切片的基本文件和增量文件来展示近乎实时的数据(几分钟)。对于copy on write的表,它提供了对现有parquet表的直接替代,同时提供了upsert/delete和其他写入功能。
(2)Incremental Queries:增量查询,该视图智能看到从某个提交/压缩写入数据集的新数据。该视图有效地提供了chang stream,来支持增量视图
(3)Read Optimized Queries:读优化视图,在此视图上的查询将查看到给定提交或压缩操作中的最新快照。该视图将最新文件切片的列暴露个查询,并保证与非hudi列式数据集相比,具有相同列式查询功能。

下面总结了两种查询的权衡
权衡 Snapshot Read Optimized
数据延迟 低 高
查询延迟 高(合并列式基础文件+行式增量日志文件) 低(原始列式数据)
2.5 Copy on Write Table
Copy on Write表中的文件切片仅包含基本/列文件,并且每次提交都会生成新版本的基本文件。换句话说,每次提交操作都会被压缩,以便存储列式数据,因此Write Amplification写入放大非常高(即使只有一个字节的数据被提交修改,我们也需要重写整个列数据文件),而读取数据成本则没有增加,所以这种表适合于做分析工作,读取密集型的操作。
下图说明了copy on write的表是如何工作的
在这里插入图片描述

  随着数据被写入,对现有文件组的更新会为该文件组生成一个带有提交即时间标记的新切片,而插入分配一个新文件组并写入该文件组第一个切片。这些切片和提交即时时间在上图用同一颜色标识。针对图上右侧sql查询,首先检查时间轴上的最新提交并过滤掉之前的旧数据(根据时间查询最新数据),如上图所示粉色数据在10:10被提交,第一次查询是在10:10之前,所以出现不到粉色数据,第二次查询时间在10:10之后,可以查询到粉色数据(以被提交的数据)。
  Copy on Write表从根本上改进表的管理方式

(1)在原有文件上进行自动更新数据,而不是重新刷新整个表/分区
(2)能够只读取修改部分的数据,而不是浪费查询无效数据
(3)严格控制文件大小来保证查询性能(小文件会显著降低查询性能)
2.6 Merge on Read Table
Merge on Read表是copy on write的超集,它仍然支持通过仅向用户公开最新的文件切片中的基本/列来对表进行查询优化。用户每次对表文件的upsert操作都会以增量日志的形式进行存储,增量日志会对应每个文件最新的ID来帮助用户完成快照查询。因此这种表类型,能够智能平衡读取和写放大(wa),提供近乎实时的数据。这种表最重要的是压缩器,它用来选择将对应增量日志数据压缩到表的基本文件中,来保持查询时的性能(较大的增量日志文件会影响合并时间和查询时间)
下图说明了该表的工作原理,并显示两种查询类型:快照查询和读取优化查询
在这里插入图片描述

(1)如上图所示,现在每一分钟提交一次,这种操作是在别的表里(copy on write table)无法做到的
(2)现在有一个增量日志文件,它保存对基本列文件中记录的传入更新(对表的修改),在图中,增量日志文件包含从10:05到10:10的所有数据。基本列文件仍然使用commit来进行版本控制,因此如果只看基本列文件,那么表的表的布局就像copy on write表一样。
(3)定期压缩过程会协调增量日志文件和基本列文件进行合并,并生成新版本的基本列文件,就如图中10:05所发生的情况一样。
(4)查询表的方式有两种,Read Optimized query和Snapshot query,取决于我们选择是要查询性能还是数据新鲜度
(5)如上图所示,Read Optimized query查询不到10:05之后的数据(查询不到增量日志里的数据),而Snapshot query则可以查询到全量数据(基本列数据+行式的增量日志数据)。
(6)压缩触发是解决所有难题的关键,通过实施压缩策略,会快速缩新分区数据,来保证用户使用Read Optimized query可以查询到X分钟内的数据

   Merge on Read Table是直接在DFS上启用近实时(near real-time)处理,而不是将数据复制到外部专用系统中。该表还有些次要的好处,例如通过避免数据的同步合并来减少写入放大(WA)

3.spark 操作

3.1 Spark-shell启动
(1)spark-shell启动,需要指定spark-avro模块,因为默认环境里没有,spark-avro模块版本好需要和spark版本对应,这里都是3.0.1,并且使用Hudi编译好的jar包。

[root@hadoop103 ~]# spark-shell --jars /opt/module/Hudi/packaging/hudi-spark-bundle/target/hudi-spark3-bundle_2.12-0.8.0.jar --packages org.apache.spark:spark-avro_2.12:3.0.1 --conf 'spark.serializer=org.apache.spark.serializer.KryoSerializer'

3.1.2 设置表名
设置表名,基本路径和数据生成器

scala> import org.apache.hudi.QuickstartUtils._
import org.apache.hudi.QuickstartUtils._

scala> import scala.collection.JavaConversions._
import scala.collection.JavaConversions._

scala> import org.apache.spark.sql.SaveMode._
import org.apache.spark.sql.SaveMode._

scala> import org.apache.hudi.DataSourceReadOptions._
import org.apache.hudi.DataSourceReadOptions._

scala> import org.apache.hudi.DataSourceWriteOptions._
import org.apache.hudi.DataSourceWriteOptions._

scala> import org.apache.hudi.config.HoodieWriteConfig._
import org.apache.hudi.config.HoodieWri
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值