利用F检验来检验自变量与因变量之间的关系能否用一个线性回归模型来表示

本文详细介绍了多元回归线性模型的原理,包括总平方和、回归平方和和残差平方和等关键概念。通过假设检验和统计决策,阐述了如何评估模型的拟合优度。在显著性水平α=0.05下,利用F分布表进行比较,强调了R-square在衡量模型解释变量对因变量影响程度上的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多元回归线性模型可以表示为:

在这里插入图片描述

相关参数

1.总平方和:n次总变差

在这里插入图片描述

2.回归平方和:反映了y的总变差中由于x与y之间的线性关系引起的y的变化部分

在这里插入图片描述

3.残差平方和:除了x对y的线性影响之外的其他因素引起的y的变化部分

在这里插入图片描述

第一步 :提出假设

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值