MQ(Message Queue:消息队列)详解(转发)

前言

本篇文章转发自Web项目聚集地(点击蓝色字体即可跳转),作者为:Java3y,首发于作者自己的公众号:Java3y。
在此感谢原作者的对于“消息队列”的详细讲述,让我对于“消息队列”有了更深一步的了解。同时,原作者在文中所提及的一些问题虽然并没有全部给出答案(比如消息队列的数据应该存在哪?如何存储?),但却都是有启发式,抛砖引玉,能引起我们思考的好问题,值得我们深思!
本篇文章有所删改,并增加了一些我个人的观点和见解,有不足或错误之处还请各位小伙伴在评论区指出!

一、什么是消息队列?

消息队列,一般简称为MQ(Message Queue),是一种常见的中间件,可以简单理解为:我们把要传输的数据放在队列中
图片1

科普:

  1. 把数据放到消息队列叫做:生产者
  2. 从消息队列里边取数据叫做:消费者

我们先不管消息(Message)这个词,来看看队列(Queue),队列是一种先进先出的数据结构。

在Java中,本身已经实现了不少的队列了,为什么还需要消息队列这种中间件呢?

大家可以先猜测一下,因为学习本身就是一个遇到问题,解决问题,归纳总结的不断循环的过程。

正如Redis是一个以key-value形式存储的内存数据库,明明我们可以使用类似HashMap这种实现类就可以达到类似的效果了,为什么还需要Redis呢?

二、为什么要使用消息队列?消息队列有什么好处?

  1. 解耦
    现在有一个系统A,系统A可以产生一个userId
    图2
    然后,现在有系统B和系统C都需要这个userId去做相关的操作
    图3
    写成伪代码可能是这样的:
    图4
    某一天,系统B的负责人告诉系统A的负责人,现在系统B的SystemBNeed2do(String userId)这个接口不再使用了,让系统A别去调它了。
    于是,系统A的负责人说“好的,那我就不调用你了。”,于是就把调用系统B接口的代码给删掉了。
    又过了几天,系统D的负责人接了个需求,也需要用到系统A的userId,于是就跑去跟系统A的负责人说:“哥们,我要用到你的userId,你调一下我的接口吧”,系统A说:“没问题,这就搞”。
    图5
    时间飞逝:
    · 又过了几天,系统E的负责人过来了,告诉系统A,需要userId
    · 又过了几天,系统B的负责人过来了,告诉系统A,还是重新调一下我的那个接口吧。
    · 又过了几天,系统F的负责人过来了,告诉系统A,需要userId
    · …
    于是系统A的负责人,每天都被这被那骚扰着,改来改去,改来改去…
    还有另外一个问题,调用系统C的时候,如果系统C挂了,系统A还得想办法处理。如果调用系统D时,由于网络延迟,请求超时了,那系统A是反馈fail还是重试?
    最后,系统A的负责人忍受不了,跑路了。
    然后,公司招来一个大佬,大佬经过几天熟悉,上来就说:将系统A的userId写到消息队列中,这样系统A就不用经常改动了。如下图所示:
    图6
    系统A将userId写到消息队列中,系统C和系统D从消息队列中拿数据,这样做的好处是:
    · 系统A 只负责 把数据写到队列中,谁想要或不想要这个数据(消息),系统A一点都不关心
    · 即便现在系统D不想要userId这个数据了,系统B又突然想要userId这个数据了,都跟系统A无关,系统A一行代码都不需要更改。
    · 系统D拿userId不再经过系统A,而是从消息队列里边拿。系统D即便挂了或者请求超时,都跟系统A无关,只跟消息队列有关
    这样一来,系统A与系统B、C、D都 解耦 了。
  2. 异步
    我们再来看看下面这种情况:系统A还是直接调用系统B、C、D。
    图7
    假设系统A运算出userId具体的值需要50ms,调用系统B的接口需要300ms,调用系统C的接口需要300ms,调用系统D的接口需要300ms。那么这次请求就需要:50+300+300+300=950ms
    并且我们得知,系统A做的是主要的业务,而系统B、C、D是非主要的业务。比如系统A处理的是订单下单,而系统B是订单下单成功了,那发送一条短信告诉具体的用户此订单已成功,而系统C和系统D也是处理一些小事而已。
    那么此时,为了 提高用户体验和吞吐量,其实可以 异步地 调用系统B、C、D的接口。所以我们可以弄成诗这样的:
    图8
    系统A执行完了以后,将userId写到消息队列中,然后就直接返回了(至于其他的操作,则异步处理)。这样做的好处是:
    · 本来整个请求需要用950ms(同步)
    · 现在 将调用其他系统接口异步化,从请求到返回只需要100ms(异步)
  3. 削峰/限流
    我们再来想象一个场景,现在我们每个月需要搞一次大促,大促期间的并发可能会很高,比如每秒3000个请求。假设我们现在有两台机器处理请求,并且每台机器只能每次处理1000个请求。
    图9
    那多出来的1000个请求,可能就把我们整个系统给搞崩了(学校的教务系统在每次校选课抢课的时候就会出现这种情况)。所以,有一种办法:我们可以写到消息队列中
    图10
    系统B和系统C 根据自己的能够处理的请求数去消息队列中拿数据,这样即便每秒有8000个请求,那只是把请求放在消息队列中,去拿消息队列的消息由系统自己去控制,这样就不会把整个系统给搞崩了。

使用消息队列有什么问题?

说到这里,我们先回到文章的开头,“明明JDK已经有不少的队列实现了,为什么我们还需要消息队列中间件呢?”其实很简单,JDK实现的队列种类虽然有很多种,但是都是 简单的内存队列。为什么我说JDK是简单的内存队列呢?下面我们来看看实现消息队列(中间件)可能要考虑什么问题

  1. 高可用
    无论是我们使用消息队列来做解耦、异步还是削峰,消息队列肯定不能是单机的。试着想一下,如果是单机的消息队列,万一这台机器挂了,那我们整个系统几乎就是不可用的了。
    图11
    所以,当我们在项目中使用消息队列时,都是得 集群/分布式 的。要做 集群/分布式 就必然希望该消息队列能够提供 现成 的支持,而不是自己写代码手动去实现。
  2. 数据丢失问题
    我们将数据写到消息队列上,系统B和C还没来得及取消息队列的数据,就挂掉了。如果没有做任何的措施,我们的数据就丢了
    图12
    学过Redis的都知道,Redis可以把数据持久化到磁盘上,万一Redis挂了,还能从磁盘中将数据恢复过来。同样地,消息队列中的数据也需要存在别的地方,这样才能尽可能地减少数据的丢失。
    那存在哪呢?
    · 磁盘?
    · 数据库?
    · Redis?
    · 分布式文件系统?
    同步存储还是异步存储?
  3. 消费者怎么得到消息队列的数据?
    消费者怎么从消息队列里边得到数据?有两个办法:
    · 生产者将数据放到消息队列中,消息队列有数据了,主动叫 消费者去拿(俗称push)
    · 消费者不断去 轮训 消息队列,看看有没有新的数据,如果有就消费(俗称pull)
  4. 其他
    除了这些,我们在使用的时候还得考虑各种的问题:
    · 消息重复消费了怎么办?
    · 我想保证消息是绝对有顺序的怎么做?
    · …
    虽然消息队列给我们带来了那么多的好处,但同时我们发现引入消息队列也会提高系统的复杂性。市面上现在已经有不少消息队列轮子了,每种消息队列都有自己的特点,选取哪种MQ还得好好斟酌
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值