题目
x
x
÷
x
=
x
2
x^x \div x=x^2
xx÷x=x2
解题
该题主要考虑我们对基本定理的熟悉程度,熟悉并记住每一个定理,融会贯通,你将无往不利、所向披靡!
⟹
x
x
−
1
=
x
2
\Longrightarrow x^{x-1}=x^2
⟹xx−1=x2
⟹
x
x
−
1
−
x
2
=
0
\Longrightarrow x^{x-1} - x^2=0
⟹xx−1−x2=0
⟹
x
2
(
x
x
−
3
−
1
)
=
0
\Longrightarrow x^2(x^{x-3} -1) =0
⟹x2(xx−3−1)=0
因为
0
0
0不能为除数,所以
x
≠
0
x\neq0
x=0,因此
x
x
−
3
−
1
=
0
x^{x-3} -1=0
xx−3−1=0,即
x
x
−
3
=
1
x^{x-3} =1
xx−3=1
x x − 3 = 1 \begin{align} x^{x-3} =1 \end{align} xx−3=1
枚举法
基本定理1: ( − 1 ) 2 n = 1 (-1)^{2n}=1 (−1)2n=1,其中 n n n为整数
根据定理1,将 x = − 1 x=-1 x=−1代人 ( 1 ) (1) (1)式 , ( − 1 ) − 1 − 3 = ( − 1 ) − 4 = ( − 1 ) 2 × − 2 \boxed{(-1)^{-1-3} =(-1)^{-4}}=(-1)^{2\times-2} (−1)−1−3=(−1)−4=(−1)2×−2, n = − 2 n=-2 n=−2, − 2 -2 −2是整数,符合条件
基本定理2: ( 1 ) n = 1 (1)^{n}=1 (1)n=1,其中 n n n为整数
根据定理2,将 x = 1 x=1 x=1代人 ( 1 ) (1) (1)式 , ( 1 ) 1 − 3 = ( 1 ) − 2 \boxed{(1)^{1-3} =(1)^{-2}} (1)1−3=(1)−2, n = − 2 n=-2 n=−2, − 2 -2 −2是整数,符合条件
基本定理3: ( n ) 0 = 1 (n)^{0}=1 (n)0=1,其中 n n n为不为0的实数
根据定理3,当 x − 3 = 0 x-3=0 x−3=0, ( 3 ) 3 − 3 = ( 3 ) 0 = 1 , \boxed{(3)^{3-3} =(3)^{0}=1}, (3)3−3=(3)0=1, n = 3 n=3 n=3, 3 3 3是实数,符合条件
整理
{ x 1 = − 1 x 2 = 1 x 3 = 3 \begin{cases} x_1=-1 \\ x_2=1 \\ x_3=3 \end{cases} ⎩ ⎨ ⎧x1=−1x2=1x3=3