这里写目录标题
一、题目
俄罗斯竞赛题
笔算开平方
446224 \sqrt{446224} 446224
二、解题方式1:设元配方
此方法需要有良好的数感,建议多刷题来提升数感!
446224
=
4
×
111556
=
2
111556
\begin{equation} \begin{split} \sqrt{446224} &=\sqrt{4 \times 111556}\\ &=2\sqrt{111556} \end{split} \end{equation}
446224=4×111556=2111556
令:
111
=
m
111=m
111=m
∵
111556
=
111
×
1000
+
555
+
1
=
111
×
(
999
+
1
)
+
5
∗
111
+
1
=
111
×
(
9
∗
111
+
1
)
+
5
∗
111
+
1
=
m
×
(
9
m
+
1
)
+
5
m
+
1
=
9
m
2
+
6
m
+
1
=
(
3
m
+
1
)
2
\begin{equation} \begin{split} \because 111556 &=111 \times 1000 + 555 + 1 \\ &=111 \times (999+1) + 5*111+ 1\\ &=111 \times (9*111+1) + 5*111+ 1\\ &=m \times(9m+1)+5m+1\\ &=9m^2+6m+1\\ &=(3m+1)^2\\ \end{split} \end{equation}
∵111556=111×1000+555+1=111×(999+1)+5∗111+1=111×(9∗111+1)+5∗111+1=m×(9m+1)+5m+1=9m2+6m+1=(3m+1)2
∴
446224
=
2
(
3
m
+
1
)
2
=
6
m
+
2
=
6
×
111
+
2
=
666
+
2
=
668
\begin{equation} \begin{split} \therefore \sqrt{446224} &= 2\sqrt{(3m+1)^2}\\ &=6m+2\\ &=6\times 111+2\\ &=666+2\\ &=668 \end{split} \end{equation}
∴446224=2(3m+1)2=6m+2=6×111+2=666+2=668
三、解题方式2:逐位逼近
①因式分解
2 ∣ 446224 ‾ 2 ∣ 223112 ‾ 2 ∣ 111556 ‾ 2 ∣ 55778 ‾ 27889 2\underline{|446224}\\ \enspace2\underline{|223112}\\ \enspace\enspace2\underline{|111556}\\ \enspace\enspace\enspace2\underline{|55778}\\ \enspace\enspace\enspace\enspace27889\\ 2∣4462242∣2231122∣1115562∣5577827889
②数字范围分析
∵
10
0
2
=
10000
\because 100^2=10000
∵1002=10000且
20
0
2
=
40000
200^2=40000
2002=40000 ,即
10
0
2
<
27889
<
20
0
2
100^2<27889<200^2
1002<27889<2002
∴
\therefore
∴ 27889是一个三位数的平方,且最高位是1
∵
\because
∵
{
0
2
个位
0
1
2
个位
1
2
2
个位
4
3
2
个位
9
4
2
个位
6
5
2
个位
5
6
2
个位
6
7
2
个位
9
8
2
个位
4
9
2
个位
1
\begin{cases} 0^2 &\text{个位 } 0 \\ 1^2 &\text{个位 } 1 \\ 2^2 &\text{个位 } 4 \\ 3^2 &\text{个位 } 9 \\ 4^2 &\text{个位 } 6 \\ 5^2 &\text{个位 } 5 \\ 6^2 &\text{个位 } 6 \\ 7^2 &\text{个位 } 9 \\ 8^2 &\text{个位 } 4 \\ 9^2 &\text{个位 } 1 \\ \end{cases}
⎩
⎨
⎧02122232425262728292个位 0个位 1个位 4个位 9个位 6个位 5个位 6个位 9个位 4个位 1
∴
\therefore
∴ 三位数的个位数是
3
3
3或
7
7
7
③求十位
设十位为
m
m
m,因为个位是
3
3
3或
7
7
7不为
0
0
0
⟹
{
(
100
+
10
m
+
0
)
2
<
27889
27889
<
(
100
+
10
(
m
+
1
)
+
0
)
2
\Longrightarrow\begin{cases} (100+10m+0) ^2\lt 27889 \\ 27889 \lt (100+10(m+1)+0) ^2\\ \end{cases}
⟹{(100+10m+0)2<2788927889<(100+10(m+1)+0)2
化简:
⟹
{
(
100
+
10
m
)
2
<
27889
27889
<
(
110
+
10
m
)
2
\Longrightarrow\begin{cases} (100+10m) ^2\lt 27889 \\ 27889 \lt (110+10m) ^2\\ \end{cases}
⟹{(100+10m)2<2788927889<(110+10m)2
两边同时除以
1
0
2
10^2
102:
⟹
{
(
10
+
m
)
2
<
278.89
278.89
<
(
11
+
m
)
2
\Longrightarrow\begin{cases} (10+m) ^2\lt 278.89\\ 278.89 \lt (11+m) ^2\\ \end{cases}
⟹{(10+m)2<278.89278.89<(11+m)2
设定数值范围:
⟹
{
1
6
2
=
256
<
278.89
278.89
<
289
=
1
7
2
\Longrightarrow\begin{cases} 16^2=256\lt 278.89\\ 278.89 \lt 289= 17^2\\ \end{cases}
⟹{162=256<278.89278.89<289=172
∴
m
=
6
\therefore m=6
∴m=6
③求个位
设个位n,则
(
160
+
n
)
2
=
27889
25600
+
320
n
+
n
2
=
27889
n
2
+
320
n
=
2289
320
n
=
2289
−
n
2
\begin{equation} \begin{split} (160+n) ^2&=27889\\ 25600+320n+n^2&=27889\\ n^2+320n&=2289\\ 320n&=2289-n^2\\ \end{split} \end{equation}
(160+n)225600+320n+n2n2+320n320n=27889=27889=2289=2289−n2
∵
n
=
3
或
7
\because n=3或7
∵n=3或7且为整数
⟹
2289
−
7
2
≤
320
n
≤
2289
−
3
2
⟹
2240
≤
320
n
≤
2280
⟹
224
≤
32
n
≤
228
⟹
112
≤
16
n
≤
114
⟹
56
≤
8
n
≤
57
<
64
⟹
7
≤
n
<
8
\Longrightarrow 2289-7^2\leq320n\leq2289-3^2 \\ \Longrightarrow 2240\leq320n\leq2280\\ \Longrightarrow 224\leq32n\leq228\\ \Longrightarrow 112\leq16n\leq114\\ \Longrightarrow 56\leq8n\leq57\lt64\\ \Longrightarrow 7\leq n\lt8
⟹2289−72≤320n≤2289−32⟹2240≤320n≤2280⟹224≤32n≤228⟹112≤16n≤114⟹56≤8n≤57<64⟹7≤n<8
∴
n
=
7
\therefore n=7
∴n=7
④整理
27889
27889
27889是百位为
1
1
1,十位为
6
6
6,个位为
7
7
7的平方。
446224
=
2
×
2
×
2
×
2
×
27889
=
4
2
×
16
7
2
=
4
×
167
=
668
\begin{equation} \begin{split} \sqrt{446224}&=\sqrt{2\times2\times2\times2\times27889}\\ &=\sqrt{4^2\times167^2}\\ &=4\times167\\ &=668 \end{split} \end{equation}
446224=2×2×2×2×27889=42×1672=4×167=668
四、解题方式3:逐位逼近2
①因式分解
2 ∣ 446224 ‾ 2 ∣ 223112 ‾ 2 ∣ 111556 ‾ 2 ∣ 55778 ‾ 27889 2\underline{|446224}\\ \enspace2\underline{|223112}\\ \enspace\enspace2\underline{|111556}\\ \enspace\enspace\enspace2\underline{|55778}\\ \enspace\enspace\enspace\enspace27889\\ 2∣4462242∣2231122∣1115562∣5577827889
②数字范围分析
∵
10
0
2
=
10000
\because 100^2=10000
∵1002=10000且
20
0
2
=
40000
200^2=40000
2002=40000 ,即
10
0
2
<
27889
<
20
0
2
100^2<27889<200^2
1002<27889<2002
∴
\therefore
∴ 27889是一个三位数的平方,且最高位是1
∵
\because
∵
{
0
2
个位
0
1
2
个位
1
2
2
个位
4
3
2
个位
9
4
2
个位
6
5
2
个位
5
6
2
个位
6
7
2
个位
9
8
2
个位
4
9
2
个位
1
\begin{cases} 0^2 &\text{个位 } 0 \\ 1^2 &\text{个位 } 1 \\ 2^2 &\text{个位 } 4 \\ 3^2 &\text{个位 } 9 \\ 4^2 &\text{个位 } 6 \\ 5^2 &\text{个位 } 5 \\ 6^2 &\text{个位 } 6 \\ 7^2 &\text{个位 } 9 \\ 8^2 &\text{个位 } 4 \\ 9^2 &\text{个位 } 1 \\ \end{cases}
⎩
⎨
⎧02122232425262728292个位 0个位 1个位 4个位 9个位 6个位 5个位 6个位 9个位 4个位 1
∴
\therefore
∴ 三位数的个位数是
3
3
3或
7
7
7
③假设个位是3,设十位m,则
(
100
+
10
m
+
3
)
2
=
27889
(
103
+
10
m
)
2
=
27889
10
3
2
+
2
×
103
×
10
m
+
(
10
m
)
2
=
27889
10609
+
100
m
2
+
2060
m
=
27889
100
m
2
+
2060
m
+
10609
−
27889
=
0
100
m
2
+
2060
m
−
17280
=
0
m
2
+
20.6
m
=
172.8
m
2
+
20
m
+
100
=
272.8
−
0.6
m
(
m
+
10
)
2
=
272.8
−
0.6
m
\begin{equation} \begin{split} (100+10m+3) ^2&=27889\\ (103+10m) ^2&=27889\\ 103^2+2\times103\times10m+(10m)^2 &=27889\\ 10609+100m^2+2060m &=27889\\ 100m^2+2060m+10609-27889 &=0\\ 100m^2+2060m-17280 &=0\\ m^2+20.6m&=172.8\\ m^2+20m+100&=272.8-0.6m\\ (m+10)^2&=272.8-0.6m\\ \end{split} \end{equation}
(100+10m+3)2(103+10m)21032+2×103×10m+(10m)210609+100m2+2060m100m2+2060m+10609−27889100m2+2060m−17280m2+20.6mm2+20m+100(m+10)2=27889=27889=27889=27889=0=0=172.8=272.8−0.6m=272.8−0.6m
∵
0
≤
m
<
10
\because0\leq m\lt10
∵0≤m<10
⟹ { 272.8 − 0.6 × 10 < 272.8 − 0.6 m 272.8 − 0.6 m ≤ 272.8 − 0.6 × 0 \Longrightarrow\begin{cases} 272.8-0.6\times10<272.8-0.6m \\ 272.8-0.6m\leq272.8-0.6\times0 \\ \end{cases} ⟹{272.8−0.6×10<272.8−0.6m272.8−0.6m≤272.8−0.6×0
⟹ { 266.8 < 272.8 − 0.6 m 272.8 − 0.6 m ≤ 272.8 \Longrightarrow \begin{cases} 266.8<272.8-0.6m \\ 272.8-0.6m\leq272.8 \\ \end{cases} ⟹{266.8<272.8−0.6m272.8−0.6m≤272.8
⟹ { 1 6 2 = 256 < 272.8 − 0.6 m 272.8 − 0.6 m < 289 = 1 7 2 \Longrightarrow\begin{cases} 16^2=256<272.8-0.6m \\ 272.8-0.6m\lt289=17^2 \\ \end{cases} ⟹{162=256<272.8−0.6m272.8−0.6m<289=172
16 16 16与 17 17 17之间没有整数,所以个位为 3 3 3不成立;
③假设个位是7,设十位m,则
(
100
+
10
m
+
7
)
2
=
27889
(
107
+
10
m
)
2
=
27889
10
7
2
+
2
×
107
×
10
m
+
(
10
m
)
2
=
27889
11449
+
100
m
2
+
2140
m
=
27889
100
m
2
+
2140
m
+
11449
−
27889
=
0
100
m
2
+
2140
m
−
16440
=
0
m
2
+
21.4
m
=
164.4
m
2
+
20
m
+
100
=
264.4
−
1.6
m
(
m
+
10
)
2
=
264.40
−
1.6
m
\begin{equation} \begin{split} (100+10m+7) ^2&=27889\\ (107+10m) ^2&=27889\\ 107^2+2\times107\times10m+(10m)^2 &=27889\\ 11449+100m^2+2140m &=27889\\ 100m^2+2140m+11449-27889 &=0\\ 100m^2+2140m-16440&=0\\ m^2+21.4m&=164.4\\ m^2+20m+100&=264.4-1.6m\\ (m+10)^2&=264.40-1.6m \end{split} \end{equation}
(100+10m+7)2(107+10m)21072+2×107×10m+(10m)211449+100m2+2140m100m2+2140m+11449−27889100m2+2140m−16440m2+21.4mm2+20m+100(m+10)2=27889=27889=27889=27889=0=0=164.4=264.4−1.6m=264.40−1.6m
∵
0
≤
m
<
10
\because0\leq m\lt10
∵0≤m<10
⟹ { 264.4 − 1.6 × 10 < 264.4 − 0.6 m 264.4 − 1.6 m ≤ 264.4 − 1.6 × 0 \Longrightarrow\begin{cases} 264.4-1.6\times10<264.4-0.6m \\ 264.4-1.6m\leq264.4-1.6\times0 \\ \end{cases} ⟹{264.4−1.6×10<264.4−0.6m264.4−1.6m≤264.4−1.6×0
⟹ { 248.4 < 264.4 − 0.6 m 264.4 − 0.6 m ≤ 264.4 \Longrightarrow \begin{cases} 248.4<264.4-0.6m \\ 264.4-0.6m\leq264.4 \\ \end{cases} ⟹{248.4<264.4−0.6m264.4−0.6m≤264.4
⟹ { 1 5 2 = 225 < 272.8 − 0.6 m 272.8 − 0.6 m < 289 = 1 7 2 \Longrightarrow\begin{cases} 15^2=225<272.8-0.6m \\ 272.8-0.6m\lt289=17^2 \\ \end{cases} ⟹{152=225<272.8−0.6m272.8−0.6m<289=172
15与17之间的整数为16,所以
m
=
6
m=6
m=6,代入
m
2
+
21.4
m
=
164.4
m^2+21.4m=164.4
m2+21.4m=164.4
6
2
+
20.6
×
6
=
36
+
129.6
=
164.4
6^2+20.6\times6=36+129.6=164.4
62+20.6×6=36+129.6=164.4
④整理
27889
27889
27889是百位为
1
1
1,十位为
6
6
6,个位为
7
7
7的平方。
446224
=
2
×
2
×
2
×
2
×
27889
=
4
2
×
16
7
2
=
4
×
167
=
668
\begin{equation} \begin{split} \sqrt{446224}&=\sqrt{2\times2\times2\times2\times27889}\\ &=\sqrt{4^2\times167^2}\\ &=4\times167\\ &=668 \end{split} \end{equation}
446224=2×2×2×2×27889=42×1672=4×167=668