浙江省中考数学典型
若: n n = 2 2048 n^n=2^{2048} nn=22048求 n \sqrt{n} n
解
幂运算公式1
a n = a t × 1 t × n a^n=a^{t \times \frac{1}{t}\times n} an=at×t1×n
n
n
=
2
2048
=
2
t
×
1
t
×
2048
=
(
2
t
)
2048
t
n^n=2^{2048}=2^{t\times\frac{1}{t}\times 2048}=(2^t)^{\frac{2048}{t}}
nn=22048=2t×t1×2048=(2t)t2048
总有一个实数
t
t
t 满足
n
=
2
t
=
2048
t
n=2^t=\frac{2048}{t}
n=2t=t2048
t × 2 t = 2048 = 2 11 t\times 2^t=2048=2^{11} t×2t=2048=211
幂运算公式2
a n − m × a m = a n − m + m = a n a^{n-m}\times a^{m}=a^{n-m+m}=a^n an−m×am=an−m+m=an
t
×
2
t
=
2
11
=
2
11
−
m
×
2
m
t\times 2^t =2^{11}=2^{11-m} \times2^m
t×2t=211=211−m×2m
总有一个实数
m
m
m 满足
t
=
2
m
=
11
−
m
t=2^m=11-m
t=2m=11−m
移项: 2 m + m = 11 = 8 + 3 = 2 3 + 3 2^m+m=11=8+3=2^3+3 2m+m=11=8+3=23+3
∵
2
m
+
m
=
8
+
3
=
2
3
+
3
\because 2^m+m=8+3=2^3+3
∵2m+m=8+3=23+3
∴
m
=
3
\therefore m=3
∴m=3
∴
t
=
2
m
=
2
3
=
8
\therefore t=2^m=2^3=8
∴t=2m=23=8
∴
n
=
2
t
=
2
8
\therefore n=2^t=2^8
∴n=2t=28
∴
n
=
2
8
=
2
8
2
=
2
4
=
16
\therefore \sqrt n=\sqrt{2^8}=2^\frac{8}{2}=2^4=16
∴n=28=228=24=16