from faker import Faker
import random
import uuid
import pandas as pd
# Initialize Faker instance
fake = Faker()
# 定义颜色的中文列表
colors = ["红色", "蓝色", "绿色", "黄色", "黑色", "白色", "粉色", "紫色", "橙色", "棕色"]
# Generate product data for a competitor clothing e-commerce
def generate_competitor_product():
return {
"商品ID": str(uuid.uuid4())[:8], # 截取部分UUID作为商品ID
"商品名称": random.choice(["运动T恤", "商务衬衫", "时尚连衣裙", "修身牛仔裤", "潮流卫衣", "轻薄风衣", "运动长裤", "休闲西装", "运动短裤", "保暖外套"]),
"分类": "女装", # 只保留女装
"现价": random.randint(60, 2500), # 竞争对手价格范围稍高
"库存数量": random.randint(1, 150), # 竞争对手库存范围稍小
"尺码": random.choice(["S", "M", "L", "XL", "XXL"]),
"颜色": random.choice(colors), # 随机选择中文颜色
"上架状态": random.choice(["上架", "下架"]),
"SKU": str(uuid.uuid4())[:8] # 截取部分UUID作为SKU
}
# Generate 10 product records for the competitor
competitor_products = [generate_competitor_product() for _ in range(10)]
# Convert the list of dictionaries to a pandas DataFrame
competitor_df = pd.DataFrame(competitor_products)
# Print the DataFrame as a table
print("竞争对手店铺商品数据(仅女装):")
print(competitor_df)
# Save the DataFrame to a CSV file
competitor_df.to_csv("competitor_women_products.csv", index=False, encoding="utf-8-sig")
print("数据已保存到文件:competitor_women_products.csv")