竞争对手数据

from faker import Faker
import random
import uuid
import pandas as pd

# Initialize Faker instance
fake = Faker()

# 定义颜色的中文列表
colors = ["红色", "蓝色", "绿色", "黄色", "黑色", "白色", "粉色", "紫色", "橙色", "棕色"]

# Generate product data for a competitor clothing e-commerce
def generate_competitor_product():
    return {
        "商品ID": str(uuid.uuid4())[:8],  # 截取部分UUID作为商品ID
        "商品名称": random.choice(["运动T恤", "商务衬衫", "时尚连衣裙", "修身牛仔裤", "潮流卫衣", "轻薄风衣", "运动长裤", "休闲西装", "运动短裤", "保暖外套"]),
        "分类": "女装",  # 只保留女装
        "现价": random.randint(60, 2500),  # 竞争对手价格范围稍高
        "库存数量": random.randint(1, 150),  # 竞争对手库存范围稍小
        "尺码": random.choice(["S", "M", "L", "XL", "XXL"]),
        "颜色": random.choice(colors),  # 随机选择中文颜色
        "上架状态": random.choice(["上架", "下架"]),
        "SKU": str(uuid.uuid4())[:8]  # 截取部分UUID作为SKU
    }

# Generate 10 product records for the competitor
competitor_products = [generate_competitor_product() for _ in range(10)]

# Convert the list of dictionaries to a pandas DataFrame
competitor_df = pd.DataFrame(competitor_products)

# Print the DataFrame as a table
print("竞争对手店铺商品数据(仅女装):")
print(competitor_df)

# Save the DataFrame to a CSV file
competitor_df.to_csv("competitor_women_products.csv", index=False, encoding="utf-8-sig")
print("数据已保存到文件:competitor_women_products.csv")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值