根据题目描述我们可以知道,无论添加的时间顺序,添加a-b的边的大小一定是固定的,即a-b上的路径上的所有长度的异或,所以题目就可以简化成寻找完全图的最小生成树。
设dis[n]为0-n点的链路上所有边长的的异或,则在之前所说的完全图中,a-b的边长就是dis[a] ^ dis[b],即为a-b上的路径上的所有长度的异或(假设最小公共祖先为c,dis[a]^dis[b]中有两段多余的0-c的异或会被相互中和掉)。则相当于每个点有一个值dis[n],而两点之间边长即为dia[a]^dis[b]。
考虑优化kruskal的过程,我们找出边权最小的且边的两边没有连通的边,选择连接,方法是在trie树上贪心,首先我们对所有的点建立trie树,然后考虑怎么样连边最优,容易发现,一定是选择二进制下交最多的两个点,那么一定对应trie树上的一个前缀,所以我们只需要df树,自底向上合并即可,考虑枚举左右子树中size小的,在另一棵子树上遍历求得异或最小值,启发式合并的复杂度是 O(n∗logn) 的,加上trie树的操作,总复杂度为 O(n∗log2n)
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 4000005;
struct edge {
int v, len;
};
int n, rt = 0, bin[30], sz[N], ls[N]