2020牛客暑期多校训练营(第五场)B Graph

    根据题目描述我们可以知道,无论添加的时间顺序,添加a-b的边的大小一定是固定的,即a-b上的路径上的所有长度的异或,所以题目就可以简化成寻找完全图的最小生成树。

    设dis[n]为0-n点的链路上所有边长的的异或,则在之前所说的完全图中,a-b的边长就是dis[a] ^ dis[b],即为a-b上的路径上的所有长度的异或(假设最小公共祖先为c,dis[a]^dis[b]中有两段多余的0-c的异或会被相互中和掉)。则相当于每个点有一个值dis[n],而两点之间边长即为dia[a]^dis[b]。

    考虑优化kruskal的过程,我们找出边权最小的且边的两边没有连通的边,选择连接,方法是在trie树上贪心,首先我们对所有的点建立trie树,然后考虑怎么样连边最优,容易发现,一定是选择二进制下交最多的两个点,那么一定对应trie树上的一个前缀,所以我们只需要df树,自底向上合并即可,考虑枚举左右子树中size小的,在另一棵子树上遍历求得异或最小值,启发式合并的复杂度是 O(n∗logn) 的,加上trie树的操作,总复杂度为 O(n∗log2n)

 

#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N = 4000005;
struct edge {
	int v, len;
};
int n, rt = 0, bin[30], sz[N], ls[N]
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值