leetcode(977)有序数组的平方

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。

示例 1:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]
示例 2:
输入:nums = [-7,-3,2,3,11]
输出:[4,9,9,49,121]

面对这样的题目,先把原来的数据平方后,有几种算来进行排序

1.直接插入排序:

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
                //直接插入排序
        int i, j;
        //平方后的数组
        for (i = 0; i < nums.size(); i++)
        {
            nums[i] = nums[i] * nums[i];
        }
        int temp = nums[0];
        for (i = 1; i < nums.size(); i++)
        {
            if (nums[i] < nums[i - 1])//小的做为哨兵
            {
                temp = nums[i];//复制为哨兵
                for (j = i - 1; j >= 0 && nums[j] > temp ;  j--)
                {
                    nums[j + 1] = nums[j];
                }
                nums[j+1] = temp;
            }


        }

        return nums;
    }
};

在这里插入图片描述
结果同样的不尽如人意。

此算法的时间复杂度为O(n^2)

2.折半插入排序

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
                //直接插入排序
        int i, j,low,high,mid;
        //平方后的数组
        for (i = 0; i < nums.size(); i++)
        {
            nums[i] = nums[i] * nums[i];
        }
        int temp = nums[0];
        for (i = 1; i < nums.size(); i++)
        {
            low=0;
            high=i-1;
            mid=(low+high)/2;
            if (nums[i] < nums[i - 1])//判断是否比前一个小,如果小就插入
            {
                temp = nums[i];//复制为哨兵,进行判断
                while(low<=high)
                {
                    if(temp>=nums[mid])
                    {
                        low=mid+1;
                    }
                    else
                    {
                        high=mid-1;
                    }
                    mid = (low + high) / 2;

                }
                for (j = i - 1; j>high ;  j--)
                {
                    nums[j + 1] = nums[j];
                }
                nums[high+1] = temp;
            }


        }

        return nums;
    }
};

折半插入排序插入排序也确实会比直接插入快了点。折半插入排序只是减少了比较次数,时间复杂度还是O(n^2)
在这里插入图片描述

3.希尔排序时间复杂度约为O(n^1.3), 最坏情况下时O(n^2)

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
            int step,i,j,temp;
            //平方后的数组
            for (i = 0; i < nums.size(); i++)
            {
                nums[i] = nums[i] * nums[i];
            }
            //希尔排序

            for(step=nums.size()/2;step>0;step/=2)//步长变化
            {
                for(i=step;i<nums.size();i++)
                {
                    temp=nums[i];
                    for(j=i-step;j>=0 && temp<nums[j];j-=step)
                    {
                        nums[j+step]=nums[j];//后移

                    }
                    nums[j+step]=temp;

                }


            }
            return nums;
    }
};

在这里插入图片描述

结果有了显著的提升

采用空间换时间双指针的方法,优点类似与归并排序

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
        int pos,i,j;
        vector<int> temp(nums.size());
        for(i=0,j=nums.size()-1,pos=nums.size()-1;i<=j;)
        {
            if(nums[i]*nums[i]>nums[j]*nums[j])
            {
                temp[pos--]=nums[i]*nums[i];
                i++;

            }
            else
            {
                temp[pos--]=nums[j]*nums[j];
                j--;
            }


        }
        return temp;
    }
};

空间复制度为O(n)

在这里插入图片描述
效果显而易见

4.快速排序

class Solution {
public:
    vector<int> sortedSquares(vector<int>& nums) {
       for(int i=0;i<nums.size();i++)
       {
           nums[i]=nums[i]*nums[i];
       }

        QuickSort(nums,0,nums.size()-1);
        return nums;
        

    }
    void QuickSort(vector<int>& nums,int low,int high)
    {
        if(low<high)
        {
            int pivotpos=Patition(nums,low,high);
            QuickSort(nums,low,pivotpos-1);
            QuickSort(nums,pivotpos+1,high);
        }


    }

    //快速排序
    int Patition(vector<int>& number,int low,int high)
    {    
        int pivot=number[low];//枢纽
        while(low<high)
        {   
            while(low<high && number[high]>=pivot) 
            {
                high--;
            }
            number[low]=number[high];//置换
            while(low<high && number[low]<=pivot)
            {
                low++;
            }
            number[high]=number[low];


        }
        number[low]=pivot;
        return low;
    }
};

在这里插入图片描述

5.归并排序

#include <iostream>
#include<vector>

using namespace std;
//归并排序




void Merge(vector<int>& nums,int low,int mid,int high)
{
	int* temp = (int*)malloc(nums.size());
	
	int count, i, j;
	for (count = low; count <=high; count++)
	{
		temp[count] = nums[count];
	}
	for (i = low, j = mid + 1, count = i; i <= mid&&j <= high; count++)
	{
		if (temp[i] <= temp[j])
		{
			nums[count] = temp[i++];
		}
		else
		{
			nums[count] = temp[j++];
		}

	}
	while (i <= mid)
	{
		nums[count++] = temp[i++];
	}
	while (j <= high)
	{
		nums[count++] = temp[j++];
	}






}


void MergeSort(vector<int>& nums, int low, int high)
{
	if (low < high)
	{
		int	mid = (low + high) / 2;
		MergeSort(nums, low, mid);
		MergeSort(nums, mid + 1, high);
		Merge(nums, low, mid, high);
	}


}

int main()
{

	//nums = [-4, -1, 0, 3, 10]
	vector<int> nums = { 16,1,0,100,10 };
	MergeSort(nums, 0, 4);
	for (int i = 0; i < 5; i++)
	{
		printf(" % d\t", nums[i]);
	}

}

leetcode中超时了,但是自己测试了一下没啥问题

6.堆排序

void HeadAdjust(vector<int>& nums, int k, int len)
{
	int i, j;
	nums[0] = nums[k];
	for (i = 2 * k; i <= len; i*=2)
	{
		if (i < len-1 && nums[i] < nums[i + 1])
		{
			i++;
		}
		if (nums[0] >= nums[i])
		{
			break;
		}
		else
		{
		
			nums[k] = nums[i];
			k = i;
		}
	}
	nums[k] = nums[0];
}
//大根堆
void BuildMaxHeap(vector<int>& nums,int len)
{
	int i = 0;
	for ( i= len / 2; i > 0; i--)
	{
		HeadAdjust(nums, i, len);
		
	}
}



void HeapSort(vector<int>& nums, int len)
{
	int i,temp=0;
	BuildMaxHeap(nums, len);//初始化大根堆
	for ( i= len-1; i > 1; i--)
	{
		temp = nums[i];
		nums[i] = nums[1];
		nums[1] = temp;
		HeadAdjust(nums, 1, i - 1);

	}


}

int main()
{

	//nums = [-4, -1, 0, 3, 10]
	vector<int> nums = { 0,53,17,78,9,45,65,87,32 };
	HeapSort(nums,nums.size());

	//MergeSort(nums, 0, 7);
	for (int i = 1; i < 9; i++)
	{
		printf(" %d\t", nums[i]);
	}

}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chenshida_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值