**给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
进阶:
尽可能想出更多的解决方案,至少有三种不同的方法可以解决这个问题。
你可以使用空间复杂度为 O(1) 的 原地 算法解决这个问题吗?
示例 1:
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右旋转 1 步: [7,1,2,3,4,5,6]
向右旋转 2 步: [6,7,1,2,3,4,5]
向右旋转 3 步: [5,6,7,1,2,3,4]
示例 2:
输入:nums = [-1,-100,3,99], k = 2
输出:[3,99,-1,-100]
解释:
向右旋转 1 步: [99,-1,-100,3]
向右旋转 2 步: [3,99,-1,-100]**
方法一:通过空间换取时间的方式,在新的数据中排好在放入nums中,我写的代码比较冗余,刚开始没考虑到移动的步长会超过数组大小的情况
class Solution {
public:
void rotate(vector<int>& nums, int k) {
//空间换时间
int temp[nums.size()],temp_number=k,sub_number;//不改变k的大小
int i,j;
sub_number=temp_number/nums.size();
temp_number=k-nums.size()*sub_number;
int temp_number1=temp_number;
printf("%d\n",sub_number);
for(i=0;i<temp_number&&nums.size()>1;i++)
{
temp[temp_number-i-1]=nums[nums.size()-i-1];
}
for(j=0;j<nums.size()-temp_number1&&nums.size()>1;j++)
{
temp[temp_number++]=nums[j];
}
for(i=0;i<nums.size()&&nums.size()>1&&nums.size()!=k;i++)
{
nums[i]=temp[i];
}
}
};
改进版本:
class Solution {
public:
void rotate(vector<int>& nums, int k) {
int i,n=nums.size();
int temp[n]; // 临时存储数据
for(i=0;i<n;i++)
{
temp[(i+k)%n]=nums[i];
}
//数组复制
for(i=0;i<n;i++)
{
nums[i]=temp[i];
}
}
};
代码简化了一下,也更好理解了,优点先循环队列的思路
方法二:
class Solution {
public:
void reserve(vector<int>& nums,int begin,int end)
{
int temp;
while(begin<end)
{
temp=nums[begin];
nums[begin]=nums[end];
nums[end]=temp;
begin++;
end--;
}
}
void rotate(vector<int>& nums, int k) {
k %= nums.size();
reserve(nums, 0, nums.size() - 1);
reserve(nums, 0, k - 1);
reserve(nums, k, nums.size() - 1);
}
};