package com.endual.paper.service.impls;
import weka.attributeSelection.*;
import weka.core.*;
import weka.core.converters.ConverterUtils.*;
import weka.classifiers.*;
import weka.classifiers.meta.*;
import weka.classifiers.trees.*;
import weka.filters.*;
import java.util.*;
/**
* performs attribute selection using CfsSubsetEval and GreedyStepwise
* (backwards) and trains J48 with that. Needs 3.5.5 or higher to compile.
*
* @author FracPete (fracpete at waikato dot ac dot nz)
*/
public class AttributeSelectionTest {
/**
* uses the meta-classifier
*/
protected static void useClassifier(Instances data) throws Exception {
System.out.println("\n1. Meta-classfier");
AttributeSelectedClassifier classifier = new AttributeSelectedClassifier();
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
J48 base = new J48();
classifier.setClassifier(base);
classifier.setEvaluator(eval);
classifier.setSearch(search);
Evaluation evaluation = new Evaluation(data);
evaluation.crossValidateModel(classifier, data, 10, new Random(1));
System.out.println(evaluation.toSummaryString());
}
/**
* uses the filter
*/
protected static void useFilter(Instances data) throws Exception {
System.out.println("\n2. Filter");
weka.filters.supervised.attribute.AttributeSelection filter = new weka.filters.supervised.attribute.AttributeSelection();
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
filter.setEvaluator(eval);
filter.setSearch(search);
filter.setInputFormat(data);
Instances newData = Filter.useFilter(data, filter);
System.out.println(newData);
}
/**
* uses the low level approach
*/
protected static void useLowLevel(Instances data) throws Exception {
System.out.println("\n3. Low-level");
AttributeSelection attsel = new AttributeSelection();
CfsSubsetEval eval = new CfsSubsetEval();
GreedyStepwise search = new GreedyStepwise();
search.setSearchBackwards(true);
attsel.setEvaluator(eval);
attsel.setSearch(search);
attsel.SelectAttributes(data);
int[] indices = attsel.selectedAttributes();
System.out.println("selected attribute indices (starting with 0):\n" + Utils.arrayToString(indices));
}
/**
* takes a dataset as first argument
*
* @param args the commandline arguments
* @throws Exception if something goes wrong
*/
public static void main(String[] args) throws Exception {
args = new String[1] ;
args[0] = "weka_data\\data\\src_data\\paper.arff" ; //导入文件
// load data
System.out.println("\n0. Loading data");
DataSource source = new DataSource(args[0]);
Instances data = source.getDataSet();
if (data.classIndex() == -1)
data.setClassIndex(data.numAttributes() - 1);
// 1. meta-classifier
useClassifier(data);
// 2. filter
useFilter(data);
// 3. low-level
useLowLevel(data);
}
}
项目结构图:肯定有人会问,这个训练文件是放在哪里的,文件夹怎样建?
运行的效果:因为涉及到论文的数据,用粗线覆盖了,抱歉无法提供完成的运行的结果